Nonlinear Dynamics

, Volume 84, Issue 2, pp 511–525 | Cite as

Inductor-free simplified Chua’s circuit only using two-op-amp-based realization

  • Bocheng Bao
  • Ning Wang
  • Mo Chen
  • Quan Xu
  • Jiang Wang
Original Paper


Based on a classical Wien bridge oscillator and a simplified Chua’s diode only using one op-amp realization, an inductor-free simplified Chua’s circuit is presented in this paper. The newly proposed circuit has only two op-amps, three capacitors, and eight resistors and, to our knowledge, is a simplest inductor-free Chua’s circuit. The state equations and their dimensionless equations are mathematically modeled. Through numerical simulations of the mathematical model and hardware experiments, the circuit emulates the dynamical behaviors of a classical Chua’s circuit, e.g., coexisting limit cycle oscillations, limit cycle oscillations, period doubling cascades, coexisting chaotic spiral attractors, chaotic double scrolls and boundary crisis. However, different from the classical Chua’s circuit, the inductor-free simplified Chua’s circuit is divided into a non-dissipative region and two dissipative regions in whole state space, resulting in the occurrence of the hollow double-scroll chaotic attractor. Furthermore, an active band pass filter-based inductor-free simplified Chua’s circuit is extended, and numerical simulations and hardware experiments are performed, from which similar dynamical behaviors are exhibited.


Chaos Chua’s circuit Realization Op-amp  Wien bridge oscillator Active band pass filter 



This work was supported by the grants from the National Natural Science Foundations of China (Grant No. 51277017) and the Natural Science Foundations of Changzhou, Jiangsu Province, China (Grant No. CJ20159026).


  1. 1.
    Fortuna, L., Frasca, M., Xibilia, M.G.: Chua’s Circuit Implementations: Yesterday, Today and Tomorrow. World Scientific, Singapore (2009)Google Scholar
  2. 2.
    Kiliç, R.: A practical guide for studying Chua’s circuits. World Scientific, Singapore (2010)Google Scholar
  3. 3.
    Matsumoto, T., Chua, L.O., Komuro, M.: Birth and death of the double scroll. Phys. D 24(1–3), 97–124 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Kennedy, M.P.: Three steps to chaos–Part II: a Chua’s circuit primer. IEEE Trans. Circuits Syst. I 40(10), 640–656 (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Zhong, G.Q., Ayrom, F.: Experimental confirmation of chaos from Chua’s circuit. Int. J. Circuit Theory Appl. 13(11), 93–98 (1985)CrossRefGoogle Scholar
  6. 6.
    Medrano-T, R.O., Rocha, R.: The negative side of Chua’s circuit parameter space: stability analysis, period-adding, basin of attraction metamorphoses, and experimental investigation. Int. J. Bifurc. Chaos 24(9), 1430025-1–1430025-17 (2014)CrossRefMATHGoogle Scholar
  7. 7.
    Viana, E.R., Rubinger, R.M., Albuquerque, H.A., Dias, F.O., Oliveira, A.G.D., Ribeiro, G.M.: Periodicity detection on the parameter-space of a forced Chua’s circuit. Nonlinear Dyn. 67(1), 385–392 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, Q.D., Zeng, H.Z., Yang, X.S.: On hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77(1–2), 255–266 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang, Z.D., Liu, B.B., Bi, Q.S.: Non-smooth bifurcations on the bursting oscillations in a dynamic system with two timescales. Nonlinear Dyn. 79(1), 195–203 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Abel, A., Schwarz, W.: Chaos communications—principles, schemes, and system analysis. Proc. IEEE 90(5), 691–710 (2002)CrossRefGoogle Scholar
  11. 11.
    Ma, J., Li, A.B., Pu, Z.S., Yang, L.J., Wang, Y.Z.: A time-varying hyperchaotic system and its realization in circuit. Nonlinear Dyn. 62(3), 535–541 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Ma, J., Wu, X.Y., Chu, R.T., Zhang, L.P.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)CrossRefGoogle Scholar
  13. 13.
    Liu, Z., Zhu, X.H., Hu, W., Jiang, F.: Principles of chaotic signal radar. Int. J. Bifurc. Chaos 17(5), 1735–1739 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Xi, F., Chen, S.Y., Liu, Z.: Chaotic analog-to-information conversion: principle and reconstructability with parameter identifiability. Int. J. Bifurc. Chaos 23(9), 1430025-1–1430025-17 (2014)Google Scholar
  15. 15.
    Kennedy, M.P.: Robust op amp realization of Chua’s circuit. Frequenz 46, 66–80 (1992)CrossRefGoogle Scholar
  16. 16.
    Rocha, R., Medrano-T, R.O.: An inductor-free realization of the Chua’s circuit based on electronic analogy. Nonlinear Dyn. 56(4), 389–400 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Chen, M., Yu, J.J., Bao, B.C.: Finding hidden attractors in improved memristor-based Chua’s circuit. Electron. Lett. 51(6), 462–464 (2015)Google Scholar
  18. 18.
    Rocha, R., Andrucioli, G.L.D., Medrano-T, R.O.: Experimental characterization of nonlinear systems: a real-time evaluation of the analogous Chua’s circuit behavior. Nonlinear Dyn. 62(1–2), 237–251 (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Kiliç, R., Alçi, M., Çam, U., Kuntman, H.: Improved realization of mixed-mode chaotic circuit. Int. J. Bifurc. Chaos 12(6), 1429–1435 (2002)CrossRefGoogle Scholar
  20. 20.
    Banerjee, T.: Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn. 68(4), 565–573 (2012)CrossRefGoogle Scholar
  21. 21.
    Tôrres, L.A.B., Aguirre, L.A.: Inductorless Chua’s circuit. Electron. Lett. 36(23), 1915–1916 (2000)CrossRefGoogle Scholar
  22. 22.
    Morgul, O.: Inductorless realization of Chua’s oscillator. Electron. Lett. 31(17), 1424–1430 (1995)CrossRefMATHGoogle Scholar
  23. 23.
    Albuquerque, H.A., Rubinger, R.M., Rech, P.C.: Theoretical and experimental time series analysis of an inductorless Chua’s circuit. Phys. D 233(1), 66–72 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. CAS–31(12), 1055–1058 (1984)CrossRefMATHGoogle Scholar
  25. 25.
    Matsumoto, T., Chua, L.O., Tokumasu, K.: Double scroll via a two-transistor circuit. IEEE Trans. Circuits Syst. CAS–33(8), 828–835 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Elwakil, A.S., Kennedy, M.P.: Improved implementation of Chua’s chaotic oscillator using current feedback op amp. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 76–79 (2000)CrossRefMATHGoogle Scholar
  27. 27.
    Li, Q.D., Yang, X.S.: Hyperchaos from two coupled Wien-bridge oscillators. Int. J. Circuit Theor. Appl. 36(1), 19–29 (2008)CrossRefMATHGoogle Scholar
  28. 28.
    Kiliç, R., Yildirim, F.: A survey of Wien bridge-based chaotic oscillators: design and experimental issues. Chaos Solitons Fractals 38(5), 1394–1410 (2008)Google Scholar
  29. 29.
    Yu, Q., Bao, B.C., Hu, F.W., Xu, Q., Chen, M., Wang, J.: Wien-bridge chaotic oscillator based on first-order generalized memristor. Acta Phys. Sin. 63(24), 240505-1–240505-14 (2014)Google Scholar
  30. 30.
    Rizwana, R., Mohamed, I.R.: Investigation of chaotic and strange nonchaotic phenomena in nonautonomous Wien-bridge oscillator with diode nonlinearity. J. Nonlinear Dyn. 2015, 612516-1–612516-7 (2015)Google Scholar
  31. 31.
    Banerjee, T., Karmakar, B., Sarkar, B.C.: Single amplifier biquad based autonomous electronic oscillators for chaos generation. Nonlinear Dyn. 62(4), 859–866 (2010)CrossRefMATHGoogle Scholar
  32. 32.
    Arulgnanam, A., Thamilmaran, K., Daniel, M.: Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit. Chaos Solitons Fractals 42(4), 2246–2253 (2009)CrossRefMATHGoogle Scholar
  33. 33.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Li, C.B., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78(5), 2059–2064 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23(5), 1350093-1–1350093-5 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bertacchini, F., Bilotta, E., Pantano, P., Tavernise, A.: Motivating the learning of science topics in secondary school: a constructivist edutainment setting for studying. Chaos Comput. Educ. 59(4), 1377–1386 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Bocheng Bao
    • 1
  • Ning Wang
    • 1
  • Mo Chen
    • 1
  • Quan Xu
    • 1
  • Jiang Wang
    • 1
  1. 1.School of Information Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations