Nonlinear Dynamics

, Volume 83, Issue 4, pp 2019–2033 | Cite as

A novel lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s memory effect

  • Jie Zhou
  • Zhong-Ke Shi
  • Zhi-Song Liu
Original Paper


Due to the bad environmental conditions such as bad weather, smoky condition, insufficient light, it is difficult for a pedestrian to capture the precise position of others in these situations. Thus, memory effect could be influential and the pedestrian may walk with his/her memory. Considering the effect of pedestrian’s memory, an extended lattice hydrodynamic model for bidirectional pedestrian flow is proposed in this paper. The stability condition is obtained by the use of linear stability analysis. It is shown that the memory effect term can significantly reduce the stability region on the phase diagram. Based on nonlinear analysis method, the Burgers, Korteweg-de Vries and modified Korteweg-de Vries equations are derived to describe the shock waves, soliton waves and kink–antikink waves in the stable, metastable and unstable regions, respectively. The theoretical results show that jams may be aggravated by considering the effect of pedestrian’s memory. Numerical simulations are carried out in order to verify the theoretical results.


Pedestrian flow Nonlinear analysis Memory effect  MKdV equation 



The authors wish to thank the anonymous referees for their useful comments. This work was partially supported by the National Natural Science Foundation of China (Grant No. 61134004), Zhejiang Province Natural Science Foundation (Grant Nos. LY12A01009; LQ12A01007), and Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Y201328023).


  1. 1.
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)CrossRefGoogle Scholar
  2. 2.
    Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002)CrossRefGoogle Scholar
  3. 3.
    Helbing, D., Buzna, L., Johansson, A., Werner, T.: Selforganized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp. Sci. 39, 1–24 (2005)CrossRefGoogle Scholar
  4. 4.
    Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M.: Pedestrian and Evacuation Dynamic 2005. Springer, Berlin (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Robin, T., Antonini, G., Bierlaire, M., Cruz, J.: Specification, estimation and validation of a pedestrian walking behavior model. Transp. Res. B 43, 36–56 (2009)CrossRefGoogle Scholar
  6. 6.
    Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems-From Molecules to Vehicles. Elsevier, Amsterdam (2010)MATHGoogle Scholar
  7. 7.
    Helbing, D., Farkas, I.J., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  8. 8.
    Helbing, D., Farkas, I.J., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84, 1240–1243 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109 (2007)CrossRefGoogle Scholar
  10. 10.
    Yu, W., Johansson, A.: Modeling crowd turbulence by many-particle simulations. Phys. Rev. E 76, 046105 (2007)CrossRefGoogle Scholar
  11. 11.
    Helbing, D., Molnr, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  12. 12.
    Johansson, A.: Constant-net-time headway as a key mechanism behind pedestrian flow dynamics. Phys. Rev. E 80, 026120 (2009)CrossRefGoogle Scholar
  13. 13.
    Kuang, H., Chen, T., Li, X.L., Lo, S.M.: A new lattice hydrodynamic model for bidirectional pedestrian flow considering the visual field effect. Nonlinear Dyn. 78(3), 1709–1716 (2014)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Tang, T.Q., Huang, H.J., Shang, H.Y.: A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn. 67(1), 437–443 (2012)CrossRefGoogle Scholar
  15. 15.
    Xia, Y.H., Wong, S.C., Shu, C.W.: Dynamic continuum pedestrian flow model with memory effect. Phys. Rev. E 79, 066113 (2009)CrossRefGoogle Scholar
  16. 16.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A 295, 507–525 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Ezaki, T., Yanagisawa, D., Nishinari, K.: Pedestrian flow through multiple bottlenecks. Phys. Rev. E 86, 026118 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular automata model for pedestrian flow. Phys. Rev. E 85, 021119 (2012)CrossRefGoogle Scholar
  19. 19.
    Tian, H.H., He, H.D., Wei, Y.F., Xue, Y., Lu, W.Z.: Lattice hydrodynamic model with bidirectional pedestrian flow. Phys. A 388, 2895–2902 (2009)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Anderson, R.W.G., Long, A.D., Serre, T.: Phenomenological continuous contact–impact modelling for multibody simulations of pedestrian–vehicle contact interactions based on experimental data. Nonlinear Dyn. 58(1–2), 199–208 (2009)CrossRefMATHGoogle Scholar
  21. 21.
    Zhou, J., Shi, Z.K.: A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s anticipation effect. Nonlinear Dyn. (2015). doi: 10.1007/s11071-015-2065-6 MathSciNetGoogle Scholar
  22. 22.
    Ivancevic, V.G., Reid, D.J., Aidman, E.V.: Crowd behavior dynamics: entropic path-integral model. Nonlinear Dyn. 59(1–2), 351–373 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Ivancevic, V.G., Reid, D.J.: Turbulence and shock-waves in crowd dynamics. Nonlinear Dyn. 68(1–2), 285–304 (2012)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Xu, X.L., Chen, Z.Q., Si, G.Y., Hu, X.F., Jiang, Y.Q., Xu, X.S.: The chaotic dynamics of the social behavior selection networks in crowd simulation. Nonlinear Dyn. 64(1–2), 117–126 (2011)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Nagatani, T.: Jamming transition in a two-dimensional traffic flow model. Phys. Rev. E 59, 4857–4864 (1999)CrossRefGoogle Scholar
  26. 26.
    Nagatani, T., Nakanishi, K.: Delay effect on phase transitions in traffic dynamics. Phys. Rev. E 57(6), 6415–6421 (1998)CrossRefGoogle Scholar
  27. 27.
    Nakayama, A., Hasebe, A., Sugiyama, Y.: Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71, 036121 (2005)CrossRefGoogle Scholar
  28. 28.
    Nakayama, A., Hasebe, A., Sugiyama, Y.: Instability of pedestrian flow in 2D optimal velocity model with attractive interaction. Comput. Phys. Commun. 177, 162–163 (2007)CrossRefGoogle Scholar
  29. 29.
    Yuen, J.K.K., Lee, E.W.M.: The effect of overtaking behavior on unidirectional pedestrian flow. Saf. Sci. 50, 1704–1714 (2012)CrossRefGoogle Scholar
  30. 30.
    Hanseler, F.S., Bierlaire, M., Farooq, B., Muhlematter, T.: A macroscopic loading model for time-varying pedestrian flows in public walking areas. Transp. Res. B 69, 60–80 (2014)CrossRefGoogle Scholar
  31. 31.
    Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 271, 599–607 (1998)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Phys. A 272, 592–611 (1999)CrossRefGoogle Scholar
  33. 33.
    Kerner, B.S., Konhauser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), 2335–2338 (1993)CrossRefGoogle Scholar
  34. 34.
    Kurtze, D.A., Hong, D.C.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52(1), 218–221 (1995)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Komatsu, T., Sasa, S.: Kink soliton characterizing traffic congestion. Phys. Rev. E 52(5), 5574–5582 (1995)CrossRefGoogle Scholar
  36. 36.
    Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kink–antikink solitons in car-following models. Phys. A 357, 466–476 (2005)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Ngoduy, D.: Effect of driver behaviours on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn. 69(3), 969–975 (2012)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70(2), 1205–1211 (2012)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Wang, T., Gao, Z.Y., Zhang, J.: Stabilization effect of multiple density difference in the lattice hydrodynamic model. Nonlinear Dyn. 73, 2197–2205 (2013)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Szameit, A., Keil, R., Dreisow, F., Heinrich, M., Pertsch, T., Nolte, S., Tünnermann, A.: Observation of discrete solitons in lattices with second-order interaction. Opt. Lett. 34(18), 2838–2840 (2009)CrossRefGoogle Scholar
  42. 42.
    Madeo, A., Della, Corte A., Greco, L., Neff, P.: Wave propagation in pantographic 2D lattices with internal discontinuities. Proc. Est. Acad. Sci. 64(3S), 325–330 (2015)CrossRefMATHGoogle Scholar
  43. 43.
    Duncan, D.B., Eilbeck, J.C., Feddersen, H., Wattis, J.A.D.: Solitons on lattices. Phys. D Nonlinear Phenom. 68(1), 1–11 (1993)CrossRefMATHGoogle Scholar
  44. 44.
    Zhou, J., Shi, Z.K.: A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of lateral discomfort. Nonlinear Dyn. (2015). doi: 10.1007/s11071-015-2052-y MathSciNetGoogle Scholar
  45. 45.
    Moussaid, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108, 6884–6888 (2011)CrossRefGoogle Scholar
  46. 46.
    Tian, B.M., Yang, H.X., Li, W., Wang, W.X., Wang, B.H., Zhou, T.: Optimal view angle in collective dynamics of self-propelled agents. Phys. Rev. E 79, 052102 (2009)CrossRefGoogle Scholar
  47. 47.
    Guo, R.Y., Huang, H.J., Wong, S.C.: Route choice in pedestrian evacuation under conditions of good and zero visibility: experimental and simulation results. Transp. Res. Part 46, 669–686 (2012)CrossRefGoogle Scholar
  48. 48.
    Cirillo, E.N.M., Muntean, A.: Dynamics of pedestrians in regions with no visibility—a lattice model without exclusion. Phys. A 392, 3578–3588 (2013)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)CrossRefGoogle Scholar
  50. 50.
    Liu, Y., Passino, K.M., Polycarpou, M.: Stability analysis of one-dimensional asynchronous swarms. IEEE Trans. Autom. Control 48(10), 1848–1854 (2003)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Della Corte A., Battista A., Dell’Isola F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. (2015). doi: 10.1016/j.ijnonlinmec.2015.06.016
  52. 52.
    Luongo, A., Ferretti, M.: Can a semi-simple eigenvalue admit fractional sensitivities? Appl. Math. Comput. 255, 165–178 (2015)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. 27, 507–529 (2014)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean UniversityZhoushanChina
  2. 2.Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang ProvinceZhejiang Ocean UniversityZhoushanChina
  3. 3.College of AutomationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations