Nonlinear Dynamics

, Volume 83, Issue 4, pp 1867–1874 | Cite as

The synchronization of a class of chaotic systems with discontinuous output

  • Runzi Luo
  • Yanhui Zeng
Original Paper


This paper investigates the synchronization of a class of chaotic systems with discontinuous output. The drive system is assumed that only the output state variable is available and the output may be a discontinuous state variable. By constructing proper response system, some novel criteria of synchronization are proposed. The new chaotic system proposed by Cai is taken as an example to justify our results.


Chaotic system Discontinuous output Chaos synchronization 



This work was jointly supported by the National Natural Science Foundation of China under Grant Nos. 11361043 and 61304161; the Technological Project Foundation of Jiangxi Province Education Office under Grant No. GJJ14156.


  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Qin, W.Y., Jiao, X.D., Sun, T.: Synchronization and anti-synchronization of chaos for a multi-degree-of-freedom dynamical system by control of velocity. J. Vib. Control 20, 146–152 (2012)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Zhao, M., Zhang, H.G., Wang, Z.L., Liang, H.J.: Observer-based lag synchronization between two different complex networks. Commun. Nonlinear Sci. Numer. Simul. 19, 2048–2059 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ando, H., Suetani, H., Kurths, J., Aihara, K.: Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force. Phys. Rev. E 86, 016205 (2012)CrossRefGoogle Scholar
  6. 6.
    Taghvafard, H., Erjaee, G.H.: Phase and anti phase synchronization of fractional order chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079–4088 (2011)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Li, C.L., Xiong, J.B., Li, W.: A new hyperchaotic system and its generalized synchronization. Optik 125, 575–579 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhou, P., Bai, R.J., Zheng, J.M.: Projective synchronization for a class of fractional-order chaotic systems with fractional-order in the (1, 2) interval. Entropy 17(3), 1123–1134 (2015)CrossRefGoogle Scholar
  9. 9.
    Boulkroune, A., Bouzeriba, A., Hamel, S., Bouden, T.: A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems. Nonlinear Dyn. 78(1), 433–447 (2014)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Boulkroune, A., Bouzeriba, A., Hamel, S., Bouden, T.: Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems. Complexity (2014). doi: 10.1002/cplx.21596 Google Scholar
  11. 11.
    Ma, S.J., Shen, Q., Hou, J.: Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters. Nonlinear Dyn. 73, 93–100 (2013)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Luo, R.Z., Wang, Y.L.: Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos 22, 023109 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Das, S., Srivastava, M., Leung, A.Y.T.: Hybrid phase synchronization between identical and nonidentical three-dimensional chaotic systems using the active control method. Nonlinear Dyn. 73, 2261–2272 (2013)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Chen, S.H., Lü, J.: Synchronization of an uncertain unified chaotic system via adaptive control. Chaos Solitons Fractals 14, 643–647 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Xu, Y.H., Wang, Y.L.: A new chaotic system without linear term and its impulsive synchronization. Optik 125, 2526–2530 (2014)CrossRefGoogle Scholar
  16. 16.
    Luo, R.Z., Wang, Y.L., Deng, S.C.: Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21, 043114 (2011)Google Scholar
  17. 17.
    Wang, F.Q., Liu, C.X.: Synchronization of unified chaotic system based on passive control. Phys. D 225, 55–60 (2007)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Pai, M.C.: Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Appl. Math. Comput. 227, 663–671 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Tousi, M., Moghaddam, R.K., Pariz, N.: Synchronization in oscillator networks with time delay and limited non-homogeneous coupling strength. Nonlinear Dyn. 82, 1–8 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, F., Jin, W.Y., Ma, J.: Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Phys. Sin. 61, 240501 (2012)MATHGoogle Scholar
  21. 21.
    Ma, J., Wu, X.Y., Qin, H.X.: Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Phys. Sin. 62, 170502 (2013)Google Scholar
  22. 22.
    Li, F., Wang, C.N., Ma, J.: Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters. Chin. Phys. B 22, 100502 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhu, F.: Observer-based synchronization of uncertain chaotic system and its application to secure communications. Chaos Solitons Fractals 40, 2384–2391 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Boulkroune, A., M’saad, M.: Fuzzy adaptive observer-based projective synchronization for nonlinear systems with input nonlinearity. J. Vib. Control 18(3), 437–450 (2012)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Senejohnny, D.M., Delavari, H.: Active sliding observer scheme based fractional chaos synchronization. Commun. Nonlinear Sci. Numer. Simul. 17, 4373–4383 (2012)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Zemouche, A., Boutayeb, M.: On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica 49, 585–591 (2013)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Bouraoui, H., Kemih, K.: Observer-based synchronization of a new hybrid chaotic system and its application to secure communications. Acta Phys. Polonica A 123, 259–262 (2013)CrossRefGoogle Scholar
  28. 28.
    Cai, G., Tan, Z., Zhou, W., Tu, W.: The dynamical analysis and control of a new chaotic system. Acta Phys. Sin. 56, 6230–6237 (2007)MATHGoogle Scholar
  29. 29.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Lü, J.H., Chen, G.R., Cheng, D.Z., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int J Bifurc. Chaos 12, 2917–2926 (2002)CrossRefMATHGoogle Scholar
  31. 31.
    Boulkroune, A., Chekireb, H., Tadjine, M., Bouatmane, S.: Observer-based adaptive feedback controller of a class of chaotic systems. Int. J. Bifurc. Chaos 16, 3411–3419 (2006)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of MathematicsNanchang UniversityNanchangPeople’s Republic of China

Personalised recommendations