Nonlinear Dynamics

, Volume 83, Issue 4, pp 1855–1866 | Cite as

Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance

  • Shuyi Shao
  • Mou ChenEmail author
  • Xiaohui Yan
Original Paper


This paper studies the fractional-order disturbance observer (FODO)-based adaptive sliding mode synchronization control for a class of fractional-order chaotic systems with unknown bounded disturbances. To handle unknown disturbances, the nonlinear FODO is explored for the fractional-order chaotic system. By choosing the appropriate control gain parameter, the disturbance observer can approximate the disturbance well. On the basis of the sliding mode control technique, a simple sliding mode surface is defined. A synchronization control scheme incorporating the introduced sliding mode surface and the designed disturbance observer is then developed. Under the control of the synchronization scheme, a good synchronization performance is realized between two identical fractional-order chaotic systems with different initial conditions. Finally, the numerical simulation results illustrate the effectiveness of the developed synchronization control scheme for fractional-order chaotic systems in the presence of external disturbances.


Fractional-order chaotic systems Synchronization control Fractional-order disturbance observer Sliding mode control 



This research is supported by National Natural Science Foundation of China (No. 61573184), Jiangsu Natural Science Foundation of China (No. SBK20130033), Program for New Century Excellent Talents in University of China (No. NCET-11-0830) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133218110013).


  1. 1.
    Podlubny, I.: Fractional-order systems and \({PI^\lambda }{D^\mu }\)-controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Moghadasianx, M., Betin, F., Yazidi, A., Capolino, G.A., Kianinezhad, R.: Position control of six-phase induction machine using fractional-order controller. International Conference on Electrical Machines (ICEM), Marseille, France, pp. 1048–1054 (2012)Google Scholar
  3. 3.
    Das, S., Pan, I.: Fractional Order Signal Processing: Introductory Concepts and Applications. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhang, D., Yu, L.: Exponential state estimation for Markovian jumping neural networks with time-varying discrete and distributed delays. Neural Netw. 35, 103–111 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang, D., Yu, L., Wang, Q.G., Ong, C.J.: Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 23, 827–834 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Yu, L.: Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays. Nonlinear Dyn. 67, 403–411 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Zhang, D., Yu, L.: Passivity analysis for stochastic Markovian switching genetic regulatory networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 16, 2985–2992 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Shokooh, A., Suáez, L.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5, 331–354 (1999)CrossRefGoogle Scholar
  9. 9.
    West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)CrossRefGoogle Scholar
  10. 10.
    Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Phys. A Stat. Mech. Appl. 389, 2434–2442 (2010)CrossRefGoogle Scholar
  11. 11.
    El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M.: Exact solutions of fractional-order biological population model. Commun. Theor. Phys. 52, 992–996 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36, 1305–1314 (2008)CrossRefGoogle Scholar
  13. 13.
    Lu, J.G.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, X.Y., Wang, M.J.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos Interdiscip. J. Nonlinear Sci. 17, 033106 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, L., Liu, C.X., Zhang, Y.B.: Experimental verification of a four-dimensional Chua’s system and its fractional order chaotic attractors. Int. J. Bifurc. Chaos 19, 2473–2486 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 3351–3357 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Min, F.H., Yu, Y., Ge, C.J.: Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system. Acta Phys. Sin. 58, 1456–1461 (2009)zbMATHGoogle Scholar
  18. 18.
    Liu, L., Liang, D.L., Liu, C.X.: Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dyn. 69, 1929–1939 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Liu, L., Liu, C.X.: Theoretical analysis and circuit verification for fractional-order chaotic behavior in a new hyperchaotic system. Math. Probl. Eng. 2014, 682408 (2014)MathSciNetGoogle Scholar
  20. 20.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38, 453–456 (1991)CrossRefzbMATHGoogle Scholar
  22. 22.
    Xi, H.L., Yu, S.M., Zhang, R.X., Xu, L.: Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems. Optik Int. J. Light Electron Opt. 125, 2036–2040 (2014)CrossRefGoogle Scholar
  23. 23.
    Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15, 3536–3546 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yang, L.X., Jiang, J.: Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 19, 1496–1506 (2014)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Peng, G.J., Jiang, Y.L., Chen, F.: Generalized projective synchronization of fractional order chaotic systems. Phys. A Stat. Mech. Appl. 387, 3738–3746 (2008)CrossRefGoogle Scholar
  26. 26.
    Wu, C.J., Zhang, Y.B., Yang, N.N.: The synchronization of a fractional order hyperchaotic system based on passive control. Chin. Phys. B 20, 060505 (2011)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Šabanovic, A.: Variable structure systems with sliding modes in motion control—a survey. IEEE Trans. Ind. Inform. 7, 212–223 (2011)CrossRefGoogle Scholar
  28. 28.
    Shi, P., Xia, Y.Q., Liu, G.P., Rees, D.: On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control 51, 97–103 (2006)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Zhang, J.H., Shi, P., Xia, Y.Q.: Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Trans. Fuzzy Syst. 18, 700–711 (2010)CrossRefGoogle Scholar
  30. 30.
    Jiang, B., Shi, P., Mao, Z.H.: Sliding mode observer-based fault estimation for nonlinear networked control systems. Circuits Syst. Signal Process. 30, 1–16 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Gao, Z.F., Jiang, B., Shi, P., Qian, M.S., Lin, J.X.: Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique. J. Frankl. Inst. 349, 1543–1560 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Phys. A Stat. Mech. Appl. 387, 57–70 (2008)CrossRefGoogle Scholar
  33. 33.
    Wang, B., Zhou, Y.G., Xue, J.Y., Zhu, D.L.: Active sliding mode for synchronization of a wide class of four-dimensional fractional-order chaotic systems. ISRN Appl. Math. 2014, 472371 (2014)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Hosseinnia, S.H., Ghaderi, R., Ranjbar, A.N., Mahmoudian, M., Momani, S.: Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Math. Appl. 59, 1637–1643 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17, 2670–2681 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Zhang, L.G., Yan, Y.: Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dyn. 76, 1761–1767 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Li, C.L., Su, K.L., Wu, L.: Adaptive sliding mode control for synchronization of a fractional-order chaotic system. J. Comput. Nonlinear Dyn. 8, 031005 (2013)CrossRefGoogle Scholar
  38. 38.
    Liu, L., Ding, W., Liu, C.X., Ji, H.G., Cao, C.Q.: Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dyn. 76, 2059–2071 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9, 706–710 (2004)CrossRefGoogle Scholar
  40. 40.
    Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47, 932–938 (2000)CrossRefGoogle Scholar
  41. 41.
    Chen, M., Chen, W.H., Wu, Q.X.: Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Sci. China Inf. Sci. 57, 012207 (2014)zbMATHGoogle Scholar
  42. 42.
    Chen, M., Yu, J.: Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn. (2015). doi: 10.1007/s11071-015-2268-x
  43. 43.
    Chen, M., Yu, J.: Adaptive dynamic surface control of nsvs with input saturation using a disturbance observer. Chin. J. Aeronaut. 28, 853–864 (2015)CrossRefGoogle Scholar
  44. 44.
    Chen, M., Ren, B.B., Wu, Q.X., Jiang, C.S.: Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci. China Inf. Sci. 58, 070202 (2015)MathSciNetGoogle Scholar
  45. 45.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  46. 46.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)zbMATHGoogle Scholar
  47. 47.
    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Li, L., Sun, Y.G.: Adaptive fuzzy control for nonlinear fractional-order uncertain systems with unknown uncertainties and external disturbance. Entropy 17, 5580–5592 (2015)CrossRefGoogle Scholar
  49. 49.
    Li, C.P., Deng, W.H.: Remarks on fractional derivatives. Appl. Math. Comput. 187, 777–784 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Yu, S.M.: A new type of chaotic generator. Acta Phys. Sin. 53, 4111–4119 (2004)Google Scholar
  51. 51.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)CrossRefzbMATHGoogle Scholar
  52. 52.
    Ishteva, M.: Properties and applications of the Caputo fractional operator. Msc. Thesis, Department of Mathematics, Universität Karlsruhe (TH), Sofia, Bulgaria, (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Jiangsu Key Laboratory of Internet of Things and Control TechnologiesNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations