Advertisement

Nonlinear Dynamics

, Volume 83, Issue 3, pp 1123–1136 | Cite as

A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2

  • R. Guesmi
  • M. A. B. Farah
  • A. Kachouri
  • M. Samet
Original Paper

Abstract

In this paper, we propose a novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a Secure Hash Algorithm SHA-2 and the Lorenz system. Our study uses DNA sequences and operations and the chaotic Lorenz system to strengthen the cryptosystem. The significant advantages of this approach are improving the information entropy which is the most important feature of randomness, resisting against various typical attacks and getting good experimental results. The theoretical analysis and experimental results show that the algorithm improves the encoding efficiency, enhances the security of the ciphertext and has a large key space and a high key sensitivity, and it is able to resist against the statistical and exhaustive attacks.

Keywords

RGB image encryption SHA-2 Chaos DNA Entropy 

References

  1. 1.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)CrossRefGoogle Scholar
  2. 2.
    Wong, K.-W., Kwok, B.S.-H., Law, W.-S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372(15), 2645–2652 (2008)MATHCrossRefGoogle Scholar
  3. 3.
    Wang, X.-Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Tang, Y., Wang, Z., Fang, J.: Image encryption using chaotic coupled map lattices with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2456–2468 (2010)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2943–2959 (2012)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(06), 1259–1284 (1998)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Solak, E., Çokal, C.: Comment on encryption and decryption of images with chaotic map lattices[chaos16, 033118 (2006)]. Chaos Interdiscip. J. Nonlinear Sci. 18(3), 038101 (2008)CrossRefGoogle Scholar
  9. 9.
    Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V.: On the security of a new image encryption scheme based on chaotic map lattices. Chaos Interdiscip. J. Nonlinear Sci. 18(3), 033112 (2008)CrossRefGoogle Scholar
  10. 10.
    Solak, E., Çokal, C., Yildiz, O.T., Biyikoğlu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(05), 1405–1413 (2010)MATHCrossRefGoogle Scholar
  11. 11.
    Li, C., Arroyo, D., Lo, K.-T.: Breaking a chaotic cryptographic scheme based on composition maps. Int. J. Bifurc. Chaos 20(08), 2561–2568 (2010)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic map lattices. Inf. Sci. 181(1), 227–233 (2011)CrossRefGoogle Scholar
  13. 13.
    Arroyo, D., Alvarez, G., Amigó, J.M., Li, S.: Cryptanalysis of a family of self-synchronizing chaotic stream ciphers. Commun. Nonlinear Sci. Numer. Simul. 16(2), 805–813 (2011)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, C., Zhang, L.Y., Ou, R., Wong, K.-W., Shu, S.: Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70(4), 2383–2388 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, X., Liu, L.: Cryptanalysis of a parallel sub-image encryption method with high-dimensional chaos. Nonlinear Dyn. 73(1–2), 795–800 (2013)MATHCrossRefGoogle Scholar
  16. 16.
    Xiao, G., Mingxin, L., Qin, L., Lai, X.: New field of cryptography: DNA cryptography. Chin. Sci. Bull. 51(12), 1413–1420 (2006)MATHGoogle Scholar
  17. 17.
    Zhang, Y., Fu, L.H.B.: Research on dna cryptography, pp. 357–376. Applied cryptography and network security, InTech Press, Rijeka, Croatia (2012)Google Scholar
  18. 18.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  19. 19.
    Clelland, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature 399(6736), 533–534 (1999)CrossRefGoogle Scholar
  20. 20.
    LaBean, T.H., Gehani, A., Reif, J.H.: DNA-based cryptography. In 5th DIMACS series in discrete mathematics and theoretical computer science, MIT (1999)Google Scholar
  21. 21.
    Shyam, M., Kiran, N., Maheswaran, V.: A novel encryption scheme based on DNA computing. HIPC2007 (2007)Google Scholar
  22. 22.
    Ailenberg, M., Rotstein, O.D.: An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques 47(3), 747 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhang, Q., Guo, L., Xue, X., Wei, X.: An image encryption algorithm based on DNA sequence addition operation. In: Bio-Inspired Computing, 2009. BIC-TA’09. Fourth International Conference on, pp 1–5. Ieee (2009)Google Scholar
  24. 24.
    Zhang, Q., Guo, L., Wei, X.: Image encryption using DNA addition combining with chaotic maps. Math. Comput. Model. 52(11), 2028–2035 (2010)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, Q., Wang, Q., Wei, X.: A novel image encryption scheme based on DNA coding and multi-chaotic maps. Adv. Sci. Lett. 3(4), 447–451 (2010)CrossRefGoogle Scholar
  26. 26.
    Liu, L., Zhang, Q., Wei, X.: A RGB image encryption algorithm based on DNA encoding and chaos map. Comput. Electr. Eng. 38(5), 1240–1248 (2012)CrossRefGoogle Scholar
  27. 27.
    Wei, X., Guo, L., Zhang, Q., Zhang, J., Lian, S.: A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system. J. Syst. Softw. 85(2), 290–299 (2012)CrossRefGoogle Scholar
  28. 28.
    Zhang, Q., Wei, X.: A novel couple images encryption algorithm based on DNA subsequence operation and chaotic system. Optik-Int. J. Light Electron Opt. 124(23), 6276–6281 (2013)CrossRefGoogle Scholar
  29. 29.
    Zhang, Q., Guo, L., Wei, X.: A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik-Int. J. Light Electron Opt. 124(18), 3596–3600 (2013)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y.: Cryptanalysis of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik-Int. J. Light Electron Opt. 126(2), 223–229 (2015)Google Scholar
  31. 31.
    Zhang, Q., Liu, L., Wei, X.: Improved algorithm for image encryption based on DNA encoding and multi-chaotic maps. AEU-Int. J. Electron. Commun. 68(3), 186–192 (2014)CrossRefGoogle Scholar
  32. 32.
    Xue, X., Zhang, Q., Wei, X., Guo, L., Wang, Q.: A digital image encryption algorithm based on DNA sequence and multi-chaotic maps. Neural Network World (2010)Google Scholar
  33. 33.
    Ozkaynak, F., Ozer, A.B., Yavuz, S.: Security analysis of an image encryption algorithm based on chaos and DNA encoding. In: Signal processing and communications applications conference (SIU), 2013 21st, pp 1–4. IEEE (2013)Google Scholar
  34. 34.
    Liu, Y., Tang, J., Xie, T.: Cryptanalyzing a RGB image encryption algorithm based on DNA encoding and chaos map. Opt. Laser Technol. 60, 111–115 (2014)CrossRefGoogle Scholar
  35. 35.
    Federal Information Processing Standards Publication 180-2, ”Announcing the Secure Hash Standard”, U.S. DoC/NIST, August (2002)Google Scholar
  36. 36.
    Ignacio Algredo-Badillo, C., Feregrino-Uribe, R.C., Morales-Sandoval, M.: FPGA-based implementation alternatives for the inner loop of the Secure Hash Algorithm SHA-256. Microprocess. Microsyst. 37(6), 750–757 (2013)CrossRefGoogle Scholar
  37. 37.
    Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov spectra with different algorithms. Phys. D 139(1), 72–86 (2000)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 421(6921), 397–3988 (1953)Google Scholar
  39. 39.
    Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10), 3320–3327 (2010)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Norouzi, B., Seyedzadeh, S.M., Mirzakuchaki, S., Mosavi, M.R.: A novel image encryption based on hash function with only two-round diffusion process. Multimed. Syst. 20(1), 45–64 (2014)CrossRefGoogle Scholar
  41. 41.
    Guesmi, R., Farah, M.A.B., Kachouri, A., Samet, M.: Hash key-based image encryption using crossover operator and chaos. Multimedia tools and applications, pp 1–17 (2015). doi: 10.1007/s11042-015-2501-0

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratory of Electronics and Information Technology, National Engineering School of SfaxSfax UniversitySfaxTunisia

Personalised recommendations