Advertisement

Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 1029–1041 | Cite as

Experimental verification of the vibro-impact capsule model

  • Yang Liu
  • Ekaterina Pavlovskaia
  • Marian Wiercigroch
Original Paper

Abstract

In this paper, an experimental verification of the vibro-impact capsule model proposed by Liu et al. in (Int. J. Mech. Sci, 66:2–11; 2013a, Int. J. Mech. Sci, 72:39–54; 2013b, Int. J. Non-Linear Mech., 70, 30–46; 2015) is presented. The capsule dynamics is investigated experimentally by varying the stiffness of the support spring, and the frequency and the amplitude of excitation. The novel design of the experimental set-up is discussed, and comparisons between the experiments and numerical simulations are presented showing a good agreement. The conducted bifurcation analysis indicates that the behaviour of the system is mainly periodic and that a fine tuning of the control parameters can significantly improve the performance of the system. The main findings provide a better insight into the vibro-impact systems subject to nonlinear friction, and the experimental rig can be used to predict the dynamic behaviour of these systems.

Keywords

Capsule dynamics vibro-impact experiment stick-slip friction 

Notes

Acknowledgments

Dr. Yang Liu would like to acknowledge the financial support for the Small Research Grant (31841) by the Carnegie Trust for the Universities of Scotland.

References

  1. 1.
    Liu, Y., Wiercigroch, M., Pavlovskaia, E., Yu, H.: Modelling of a vibro-impact capsule system. Int. J. Mech. Sci. 66, 2–11 (2013)CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Pavlovskaia, E., Hendry, D., Wiercigroch, M.: Vibro-impact responses of capsule system with various friction models. Int. J. Mech. Sci. 72, 39–54 (2013)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Pavlovskaia, E., Wiercigroch, M., Peng, Z.: Forward and backward motion control of a vibro-impact capsule system. Int. J. Non-Linear Mech. 70, 30–46 (2015)CrossRefGoogle Scholar
  4. 4.
    Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the Capsubot using internal force and static friction. In: IEEE International Conference on Decision and Control, pp. 6575–6580 (2006)Google Scholar
  5. 5.
    Chernousko, F.L.: The optimal periodic motions of a two-mass system in a resistant medium. J. Appl. Math. Mech. 72, 116–125 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fang, H.B., Xu, J.: Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium. J. Sound Vib. 330, 4002–4018 (2011)CrossRefGoogle Scholar
  7. 7.
    Chernousko, F.L.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66, 1–7 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Nakamura, T., Terano, A.: Capsule endoscopy: past, present, and future. J. Gastroenterol. 43, 93–99 (2008)CrossRefGoogle Scholar
  9. 9.
    Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  10. 10.
    Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011)CrossRefGoogle Scholar
  11. 11.
    Gao, M.Y., Hu, C.Z., Chen, Z.Z., Zhang, H.H., Liu, S.: Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope. IEEE Trans. Biomed. Eng. 57, 2891–2902 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhang, C., Liu, H., Tan, R.J., Li, H.Y.: Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine. Tribol. Lett. 47, 295–301 (2012)CrossRefGoogle Scholar
  13. 13.
    Savi, M.A., Divenyi, S., Franca, L.F.P., Weber, H.I.: Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems. J. Sound Vib. 301, 59–73 (2007)CrossRefGoogle Scholar
  14. 14.
    Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Bifurcation analysis and an impact oscillator with a one-sided elastic constraint near grazing. Phys. D 239, 312–321 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Aguiar, R.R., Weber, H.I.: Mathematical modeling and experimental investigation of an embedded vibro-impact system. Nonlinear Dyn. 65, 317–334 (2011)CrossRefGoogle Scholar
  16. 16.
    Pavlovskaia, E., Wiercigroch, M., Grebogi, C.: Modeling of an impact system with a drift. Phys. Rev. E 64, 056224 (2001)CrossRefGoogle Scholar
  17. 17.
    Pavlovskaia, E., Wiercigroch, M.: Periodic solution finder for an impact oscillator with a drift. J. Sound Vib. 267, 893–911 (2003)CrossRefGoogle Scholar
  18. 18.
    Luo, G.W., Lv, X.H.: Controlling bifurcation and chaos of a plastic impact oscillator. Nonlinear Anal.: Real World Appl. 10, 2047–2061 (2009)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Nguyen, V.D., Woo, K.C., Pavlovskaia, E.: Experimental study and mathematical modelling of a new of vibro-impact moling device. Int. J. Non-Linear Mech. 43, 542–550 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yang Liu
    • 1
  • Ekaterina Pavlovskaia
    • 2
  • Marian Wiercigroch
    • 2
  1. 1.School of EngineeringRobert Gordon UniversityAberdeenUK
  2. 2.Centre for Applied Dynamics Research, School of Engineering, King’s CollegeUniversity of AberdeenAberdeenUK

Personalised recommendations