Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 963–970 | Cite as

Complex dynamics of nano-mechanical membrane in cavity optomechanics

Original Paper


Theoretical analysis of a suspended nano-mechanical membrane subject to an optical driving field in an optomechanical cavity is presented, which is confirmed through numerical simulations. In the presence of an optical field between its mirrors, the high-finesse optomechanical resonator acts as an oscillator driven by a radiation pressure force. The periodic nature of the radiation pressure force makes the nano-mechanical membrane in the optomechanical system as a kicked harmonic oscillator. Mathematically the physical system displays a stochastic web map that helps to understand several properties of the kicked membrane in classical phase space. We find that our web map is area preserving and displays quasiperiodic symmetrical structures in phase space which we express as q-fold symmetry. It is shown that under appropriate control of certain parameters, namely the frequency ratio and the kicking strength, the dynamics of kicked membrane exhibits chaotic dynamics. We provide the stability analysis by means of Lyapunov exponent and survival probability.


Optomechanics Driven system Stability Lyapunov exponent Survival probability 



We thank Higher Education Commission, Pakistan and Quaid-i-Azam University for financial support through Grants No. HEC/20-1374 and No. QAU-URF2014.


  1. 1.
    Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. 525(3), 215–233 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity Optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014)CrossRefGoogle Scholar
  3. 3.
    Rogers, B., Lo Gullo, N., De Chiara, G., Palma, G.M., Paternostro, M.: Hybrid optomechanics for quantum technologies. Quantum Meas. Quantum Metrol. 2(1), 11–43 (2014)Google Scholar
  4. 4.
    Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92(2), 023846 (2015)CrossRefGoogle Scholar
  5. 5.
    Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B: At. Mol. Opt. Phys. 48(6), 065502 (2015)CrossRefGoogle Scholar
  6. 6.
    Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90(2), 023817 (2014)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92(3), 033806 (2015)CrossRefGoogle Scholar
  8. 8.
    Akram, M. J., Naseer, K., Saif, F.: Efficient tunable switch from slow light to fast light in quantum opto-electromechanical system.arXiv:1503.01951 (2015)
  9. 9.
    Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D. 23(8), 1693–1708 (1981)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Tittonen, I., et al.: Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits. Phys. Rev. A. 59(2), 10381044 (1999)CrossRefGoogle Scholar
  11. 11.
    Jacobs, K., Tittonen, I., Wiseman, H.M., Schiller, S.: Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion. Phys. Rev. A 60(1), 538548 (1999)CrossRefGoogle Scholar
  12. 12.
    Braginsky, V.B., Strigin, S.T., Vyatchanin, S.P.: Parametric oscillatory instability in FabryPerot interferometer. Phys. Lett. A 287, 331 (2001)CrossRefGoogle Scholar
  13. 13.
    Dorsel, A., McCullen, J.D., Meystre, P., Vignes, E., Walther, H.: Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550 (1983)CrossRefGoogle Scholar
  14. 14.
    Meystre, P., Wright, E.M., McCullen, J.D., Vignes, E.: Theory of radiation-pressure-driven interferometers. J. Opt. Soc. Am. B 2, 1830 (1985)CrossRefGoogle Scholar
  15. 15.
    Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)CrossRefGoogle Scholar
  16. 16.
    Mlynek, J., Balykin, V., Meystre, P.: Special issue on optics and interferometery with atoms. Appl. Phys. B 54, 319 (1992)CrossRefGoogle Scholar
  17. 17.
    Saif, F.: Dynamical localization and signatures of phase space. Phys. Lett. A 274, 98–103 (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Saif, F., Riedel, K., Schleich, W.P., Mirbach, B.: Dynamical localization and decoherence. In: Blanchard, P.H., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Lecture Notes in Physics, Decoherence: Theoretical, Experimental, and Conceptual Problems, pp. 179–189. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Yasir, K.A., Ayub, M., Saif, F.: Exponential localization of moving end mirror in optomechanics. J. Mod. Opt. 61(16), 1318–1323 (2014)Google Scholar
  20. 20.
    Saif, F.: Classical and quantum chaos in atom optics. Phys. Rep. 419, 207 (2005)CrossRefGoogle Scholar
  21. 21.
    Saif, F.: Dynamical localization and signatures of classical phase space. Phys. Lett. A 274, 98–103 (2000)CrossRefMATHGoogle Scholar
  22. 22.
    Saif, F.: Quantum recurrences: a probe to study quantum chaos. Phys. Rev. E 62, 6308–6311 (2000)CrossRefGoogle Scholar
  23. 23.
    Saif, F.: Dynamical recurrences in periodically driven systems. J. Opt. B 7, S116–S119 (2005)CrossRefGoogle Scholar
  24. 24.
    Saif, F.: Nature of quantum recurrence in higher dimensional systems. Eur. Phys. J. D 39, 87–90 (2006)CrossRefGoogle Scholar
  25. 25.
    Tchatchueng, S., et al.: Bifurcation response and Melnikov chaos in the dynamic of a Bose-Einstein condensate loaded into a moving optical lattice. Nonlinear Dyn. 75, 461–474 (2014)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., Chemikov, A.A.: Weak Chaos and Quasi-Regular Patterns. Cambridge University Press, New York (1991)CrossRefGoogle Scholar
  27. 27.
    Reichl, L.E.: The Transition to Chaos In Conservative Classical Systems: Quantum Manifestations. Springer, New York (1992)CrossRefMATHGoogle Scholar
  28. 28.
    Tanabe, S., Watanabe, S., Saif, F., Matsuzawa, M.: Survival probability of a truncated radial oscillator subject to periodic kicks. Phys. Rev. A. 65, 033420 (2002)CrossRefGoogle Scholar
  29. 29.
    Lictenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, New York (1992)CrossRefGoogle Scholar
  30. 30.
    Chernikov, A.A., Sagdeev, R.Z., Zaslavsky, G.M.: Chaos: How regular can it be? Phys. Today Online 41, 11–27 (1988)CrossRefGoogle Scholar
  31. 31.
    Yang, C., Wu, Q.: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping-a case study. Nonlinear Dyn. 59, 239257 (2010)MathSciNetGoogle Scholar
  32. 32.
    Zhang, X., Zhu, H., Yao, H.: Analysis of a new three dimensional chaotic system. Nonlinear Dyn. 67, 335343 (2012)Google Scholar
  33. 33.
    Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 264 (1979)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Kengne, J., Chedjou, J.C., Kom, M., Kyamakya, K., Tamba, V.K.: Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyn. 76, 1119–1132 (2014)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance. Nonlinear Dyn. 73, 39–52 (2013)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Semenov, M.E., Shevlyakova, D.V., Meleshenko, P.A.: Inverted pendulum under hysteretic control: stability zones and periodic solutions. Nonlinear Dyn. 75, 247–256 (2014)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, London (2007)Google Scholar
  38. 38.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (1998)MATHGoogle Scholar
  39. 39.
    Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A.: Minimal chaos, stochastic webs, and structures of quasicrystal symmetry. Usp. Fiz. Nauk 156, 193–251 (1988)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Kells, G.A., Twamley, J., Heffernan, D.M.: Dynamical properties of the delta-kicked harmonic oscillator. Phys. Rev. E 70, 015203 (2004)CrossRefGoogle Scholar
  41. 41.
    Gardiner, S.A., Cirac, J.I., Zoller, P.: Quantum chaos in an ion trap: the delta-kicked harmonic oscillator. Phys. Rev. Lett. 79, 4790 (1997)CrossRefGoogle Scholar
  42. 42.
    Jones, P.H., Stocklin, M.M., Hur, G., Monteiro, T.S.: Atoms in double-\(\delta \)-kicked periodic potentials: chaos with long-range correlations. Phys. Rev. Lett. 93(22), 223002 (2004)CrossRefGoogle Scholar
  43. 43.
    Stocklin, M.M.A., Monteiro, T.S.: Classical momentum diffusion in double-\(\delta \)-kicked particles. Phys. Rev. E 74(2), 026210 (2006)CrossRefGoogle Scholar
  44. 44.
    Monteiro, T.S., Rançon, A., Ruostekoski, J.: Nonlinear resonances in \(\delta \)-kicked Bose-Einstein condensates. Phys. Rev. Lett. 102(1), 014102 (2009)CrossRefGoogle Scholar
  45. 45.
    Li, Y., Wu, L.-A., Wang, Z.D.: Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys. Rev. A 83, 043804 (2011)CrossRefGoogle Scholar
  46. 46.
    Gardiner, S. A.: Quantum measurement, quantum chaos, and Bose-Einstein condensates. Ph.D. Thesis, Leopold-Franzens Universitat Innsbruck, Austria (2000)Google Scholar
  47. 47.
    Thompson, J.D., et al.: Strong dispersive coupling of a high finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008)CrossRefGoogle Scholar
  48. 48.
    Sankey, J.C., et al.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010)CrossRefGoogle Scholar
  49. 49.
    Liang, H., Huang, J., Zhao, Y.: Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems. Nonlinear Dyn. 78(3), 1659–1681 (2014)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Zhang, F., Mu, C., Wang, X., Ahmed, I., Shu, Y.: Solution bounds of a new complex PMSM system. Nonlinear Dyn. 74, 1041–1051 (2013)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Altmann, E.G., Tél, T.: Poincaré recurrences and transient chaos in systems with leaks. Phys. Rev. E 79(1), 16204 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations