Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 919–939 | Cite as

Nonlinear analysis of vertical conveyor with positive position feedback (PPF) controllers

  • A. T. EL-Sayed
  • H. S. Bauomy
Original Paper


In this paper, the two positive position feedback controllers (PPF) are used to reduce the vertical vibration in the vertical conveyors. An investigation is presented of the response of a four-degree-of-freedom system (4-DOF) with cubic nonlinearities and external excitations at primary resonance \((\Omega _1 \cong \omega _1 ,\Omega _2 \cong \omega _2)\) in the presence of 1:1 internal resonance \((\omega _3 \cong \omega _1 ,\omega _4 \cong \omega _2)\). Method of multiple scales is applied to the equations of the system to find approximate analytical solutions. Then, we derived the frequency response equation and the stability criteria for the system. Numerical solution show that the time histories of the main system and the PPF controllers to present the response with and without control. The frequency response curves for the system and the controllers are studied numerically. To discuss the validity of the results, we make comparison between the analytical and numerical solutions and also compared them with the available published work.


Vertical conveyor Perturbation Simultaneous resonances PPF control Stability 



The authors greatly appreciate the comments of referees and suggestions for improving the quality of this paper.


  1. 1.
    Spivakovasky, A.O., Dyachkov, V.K.: Conveying Machines, vol. II. Mir, Moscow (1985)Google Scholar
  2. 2.
    Ganapathy, S., Parameswaran, M.A.: Transition over resonance and power requirements of an unbalanced mass driven vibratory system. Mech. Mach. Theory 21, 73–85 (1986)CrossRefGoogle Scholar
  3. 3.
    Rocard, Y.: General Dynamics of Vibrations, 3rd edn. Ungar, New York (1960)Google Scholar
  4. 4.
    Mazert, R.: Mécanique Vibratoire. In: Béranger, C. (ed.) Paris, France (1955)Google Scholar
  5. 5.
    Panovko, Y.G., Gubanova, I.I.: Stability and Oscillations of Elastic Systems. Consultants Bureau, New York (1965)MATHGoogle Scholar
  6. 6.
    Götzendorfer, A.: Vibrated granular matter: transport, fluidization, and patterns. Ph.D. thesis, University Bayreuth (2007)Google Scholar
  7. 7.
    Bayıroğlu, H.: Computational dynamic analysis of unbalanced mass of vertical conveyor elevator. In: Sixth International Conference of the Balkan Physical Union. AIP Conference Proceedings, vol. 899, p. 712 (2007)Google Scholar
  8. 8.
    Bayıroğlu, H.: Nonlinear analysis of unbalanced mass of vertical conveyor: primary, subharmonic, and superharmonic response. Nonlinear Dyn. 71, 93–107 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bolla, M.R., Balthazar, J.M., Felix, J.L.P., Mook, D.T.: On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn. 50(4), 841–847 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Balthazar, J.M., Brasıl, R.M.L.R.F., Weber, H.I., Fenili, A., Belato, D., Felix, J.L.P., Garzelli, F.J.: A Review of New Vibration Issues Due to Non-ideal Energy Sources. CRC Press, Boca Raton (2004)MATHGoogle Scholar
  11. 11.
    Bayiroglu, H., Alisverisci, G.F., Unal, G.: Nonlinear response of vibrational conveyors with non-ideal vibration exciter: superharmonic and subharmonic resonance. Math. Probl. Eng. (2012). Article Number: 717543. doi: 10.1155/2012/717543
  12. 12.
    Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  13. 13.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)MATHGoogle Scholar
  14. 14.
    Piccirillo, V., Balthazar, J.M., Pontes Jr, B.R.: Analytical study of the nonlinear behavior of a shape memory oscillator: Part I–primary resonance and free response at low temperatures. Nonlinear Dyn. 59(4), 733–746 (2009). doi: 10.1007/s11071-009-9573-1 CrossRefMATHGoogle Scholar
  15. 15.
    Piccirillo, V., Balthazar, J.M., Pontes Jr, B.R.: Analytical study of the nonlinear behavior of a shape memory oscillator: Part II–resonance secondary. Nonlinear Dyn. 60(4), 513–524 (2009). doi: 10.1007/s11071-009-9611-z
  16. 16.
    Dantas, M.J.H., Balthazar, J.M.: A comment on a non-ideal centrifugal vibrator machine behavior with soft and hard springs. Int. J. Bifurc. Chaos 16(4), 1083–1088 (2006)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Alisverisci, G.F., Bayiroglu, H., Unal, G.: Nonlinear response of vibrational conveyors with non-ideal vibration exciter: primary resonance. Nonlinear Dyn. 69(4), 1611–1619 (2012). doi: 10.1007/s11071-012-0372-8 CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    El-Ganaini, W.A., Saeed, N.A., Eissa, M.: Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72(3), 517–537 (2013)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ektiar, A.A., El-Awad, R.A., Hamed, Y.S.: Nonlinear dynamic analysis of vertical shaking conveyor under harmonic and parametric excitation. Int. J.Scientific Eng. Res. 5, 726–734 (2014)Google Scholar
  20. 20.
    Ferrari, G., Amabili, M.: Active vibration control of a sandwich plate by non-collocated positive position feedback. J. Sound Vib. 342, 44–56 (2015)CrossRefGoogle Scholar
  21. 21.
    Omidi, E., Mahmoodi, S.N.: Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems. Commun. Nonlinear Sci. Numer. Simul. 22, 49–166 (2015)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Omidi, E., Mahmoodi, S.N.: Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach. Nonlinear Dyn. 79(2), 835–849 (2015)CrossRefMATHGoogle Scholar
  23. 23.
    Bayıroğlu, Hüseyin: Nonlinear analysis of unbalanced mass of vertical conveyer with non-ideal exciters. Appl. Mech. Mater. 706, 35–43 (2015)Google Scholar
  24. 24.
    Hamed, Y.S., Amer, Y.A.: Non linear saturation controller for vibration suppression of a nonlinear flexible composite beam. J. Mech. Sci. Technol. 28(8), 2987–3002 (2014)CrossRefGoogle Scholar
  25. 25.
    Kamel, M.M., EL-Ganaini, W.A., Hamed, Y.S.: Vibration suppression in ultrasonic machining described by nonlinear differential equations via passive controller. Appl. Math. Comput. 219, 4692–4701 (2013)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Eissa, M., Kandil, A., Kamel, M., El-Ganaini, W.A.: On controlling the response of primary and parametric resonances of a nonlinear magnetic levitation system. Meccanica 50, 233–251 (2015)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    El-Sayed, A.T., Bauomy, H.S.: Vibration control of helicopter blade flapping via time-delay absorber. Meccanica 49, 587–600 (2014)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley- Interscience, New York (1991)MATHGoogle Scholar
  29. 29.
    Kevorkian, Cole, J.D.: Multiple scale and singular perturbation methods. Spinger, New York (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Basic SciencesModern Academy for Engineering and TechnologyMaadiEgypt
  2. 2.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  3. 3.Department of Mathematics, College of Arts and Science in Wadi AddawasirPrince Sattam Bin Abdulaziz UniversityWadi AddawasirSaudi Arabia

Personalised recommendations