Advertisement

Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 713–718 | Cite as

Vector Hermite–Gaussian spatial solitons in (2+1)-dimensional strongly nonlocal nonlinear media

  • Hong-Yu Wu
  • Li-Hong Jiang
Original Paper

Abstract

We obtain an analytical vector Hermite–Gaussian spatial soliton solution of the (2+1)-dimensional coupled nonlocal nonlinear Schrödinger equation in the inhomogeneous nonlocal nonlinear media, and investigate the periodic expansion and compression behaviors of Hermite–Gaussian spatial solitons in a periodic modulation system. The structure of Hermite–Gaussian soliton lattice is decided by the degree (nm) of Hermite polynomials. The evolution of the soliton-lattice breather appears the full breathing cycle, and the interval between solitons oscillates periodically as the wave propagates. The amplitude and width change periodically; however, they exist opposite trend in the periodic modulation system.

Keywords

Vector Hermite–Gaussian spatial solitons (2+1)-dimensional coupled nonlocal nonlinear Schrödinger equation Strongly nonlocal nonlinear media 

Notes

Acknowledgments

This work was supported by the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y201120994.

References

  1. 1.
    Lü, X., Lin, F., Qi, F.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton. Appl. Math. Model. 39, 3221–3226 (2015)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Biswas, A., Khan, K.R., Milovic, D., Belic, M.: Bright and dark solitons in optical metamaterials. Optik 125, 3299–3302 (2014)CrossRefGoogle Scholar
  3. 3.
    Biswas, A., Mirzazadeh, M., Eslami, M.: Soliton solution of generalized chiral nonlinear Schrödinger’s equation with time-dependent coefficients. Acta Phys. Pol. B 45, 849–866 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Zhou, Q., Yu, H., Xiong, X.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80, 983–987 (2015)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Jiang, H.J., Xiang, J.J., Dai, C.Q., Wang, Y.Y.: Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels. Nonlinear Dyn. 75, 201–207 (2014)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Zhou, Q., Yao, D.Z., Chen, F., Li, W.W.: Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60, 854–859 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Savescu, M., Bhrawy, Ali H., Hilal, E.M., Alshaery, A.A., Moraru, L., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for parabolic law nonlinearity. Optoelectron. Adv. Mater. Rapid Commun. 9, 10–13 (2015)Google Scholar
  8. 8.
    Zhou, Q., Zhu, Q.P., Yu, H., Liu, Y.X., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in a cascaded system. Laser Phys. 25, 025402 (2015)CrossRefGoogle Scholar
  9. 9.
    Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445–451 (2014)CrossRefGoogle Scholar
  10. 10.
    Biswas, A., Moosaei, H., Eslami, M., Mirzazadeh, M., Zhou, Q., Bhrawy, A.H.: Optical soliton perturbation with extended Tanh function method. Optoelectron. Adv Mater. Rapid Commun. 8, 1029–1034 (2014)Google Scholar
  11. 11.
    Vega-Guzman, J., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 1063–1070 (2014)Google Scholar
  12. 12.
    Zhou, Q.: Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect. Optik 125, 3142–3144 (2014)CrossRefGoogle Scholar
  13. 13.
    Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Optoelectron. Adv. Mater. 23, 1450014 (2014)Google Scholar
  14. 14.
    Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 442–459 (2014)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Rom. J. Phys. 59, 582–589 (2014)Google Scholar
  16. 16.
    Zhou, Q., Biswas, A.: Optical solitons in birefringent fibers with parabolic law nonlinearity. Opt. Appl. 44, 399–409 (2014)Google Scholar
  17. 17.
    Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Yao, P., Biswas, A.: Thirring optical solitons in birefringent fibers with spatio-temporal dispersion and Kerr law nonlinearity. Laser Phys. 25, 015402 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M.: Anjan Biswas: optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)CrossRefGoogle Scholar
  20. 20.
    Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion. Optoelectron. Adv. Mater. Rapid Commun. 17, 74–81 (2015)Google Scholar
  21. 21.
    Vega-Guzman, J., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 16, 41–46 (2015)MathSciNetGoogle Scholar
  22. 22.
    Dai, C.Q., Chen, R.P., Zhang, J.F.: Analytical spatiotemporal similaritons for the generalized (3+1)-dimensional Gross–Pitaevskii equation with an external harmonic trap. Chaos Soliton Fractals 44, 862–870 (2011)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Lai, X.J., Jin, M.Z., Zhang, J.F.: Two-dimensional self-similar rotating azimuthons in strongly nonlocal nonlinear media. Chin. J. Phys. 51, 230–242 (2013)MathSciNetGoogle Scholar
  24. 24.
    Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)CrossRefGoogle Scholar
  25. 25.
    Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3+1)-dimensional cubic–quintic Schrödinger equation in PT-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)CrossRefGoogle Scholar
  27. 27.
    Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov–Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862 (2014)CrossRefGoogle Scholar
  28. 28.
    Dai, C.Q., Wang, Y.Y.: Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrödinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)CrossRefGoogle Scholar
  29. 29.
    Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equation and fractional coupled Schrödinger. Eur. Phys. J. Plus 129, 260 (2014)Google Scholar
  31. 31.
    Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys. 261, 244–255 (2014)Google Scholar
  32. 32.
    Yang, B., Zhong, W.P., Belic, M.R.: Self-similar Hermite–Gaussian spatial solitons in two-dimensional nonlocal nonlinear media. Commun. Theor. Phys. 53, 937–942 (2010)CrossRefMATHGoogle Scholar
  33. 33.
    Zhong, W.P., Belic, M.R., Huang, T.W.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Zhou, Q., Yao, D.Z., Ding, S.J., Zhang, Y.F., Chen, F., Chen, F., Liu, X.N.: Spatial optical solitons in fifth order and seventh order weakly nonlocal nonlinear media. Optik 124, 5683–5686 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhou, Q., Zhu, Q.P., Liu, Y.X., Yao, P., Bhrawy, A.H., Moraru, L., Biswas, A.: Bright–dark combo optical solitons with non-local nonlinearity in parabolic law medium. Optoelectron. Adv. Mater. Rapid Commun. 8, 837–839 (2014)Google Scholar
  36. 36.
    Zhou, Q., Yao, D.Z., Liu, X.N., Chen, F., Ding, S.J., Zhang, Y.F., Chen, F.: Exact solitons in three-dimensional weakly nonlocal nonlinear time-modulated parabolic law media. Opt. Laser Tech. 51, 32–35 (2013)CrossRefGoogle Scholar
  37. 37.
    Wyller, J., Bang, O., Krolikowski, W., Rasmussen, J.J.: Phys. Rev. E 66, 066615 (2002)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Lopez-Aguayo, S., Gutierrez-Vega, J.C.: Opt. Express 15, 18326 (2007)CrossRefGoogle Scholar
  39. 39.
    Yakimenko, A.I., Lashkin, V.M., Prikhodko, O.O.: Phys. Rev. E 73, 066605 (2006)CrossRefGoogle Scholar
  40. 40.
    Zhong, W.P., Yi, L.: Two-dimensional Whittaker solitons in nonlocal nonlinear media. Phys. Rev. A 75, 061801 (2007)CrossRefGoogle Scholar
  41. 41.
    Liang, G., Li, H.G.: Polarized vector spiraling elliptic solitons in nonlocal nonlinear media. Opt. Commun. 352, 39–44 (2015)CrossRefGoogle Scholar
  42. 42.
    Manakov, S.V.: Zh. Eksp. Teor. Fiz. 65, 505 (1973)Google Scholar
  43. 43.
    Manakov, S.V.: Sov. Phys. JETP 38, 248 (1974)MathSciNetGoogle Scholar
  44. 44.
    Chen, Z., Segev, M., Coskun, T., Christodoulides, D.N.: Opt. Lett. 21, 1436–1438 (1996)CrossRefGoogle Scholar
  45. 45.
    Dai, C.Q., Wang, Y.Y., Wang, X.G.: Ultrashort self-similar solutions of the cubic–quintic nonlinear Schrödinger equation with distributed coefficients in the inhomogeneous fiber. J. Phys. A Math. Theor. 44, 155203 (2011)CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Dai, C.Q., Zhu, S.Q., Wang, L.L.: Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrödinger equation with distributed coefficients. Europhys. Lett. 92, 24005 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Engineering and DesignZhejiang Lishui UniversityLishuiPeople’s Republic of China

Personalised recommendations