Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 713–718

# Vector Hermite–Gaussian spatial solitons in (2+1)-dimensional strongly nonlocal nonlinear media

Original Paper

## Abstract

We obtain an analytical vector Hermite–Gaussian spatial soliton solution of the (2+1)-dimensional coupled nonlocal nonlinear Schrödinger equation in the inhomogeneous nonlocal nonlinear media, and investigate the periodic expansion and compression behaviors of Hermite–Gaussian spatial solitons in a periodic modulation system. The structure of Hermite–Gaussian soliton lattice is decided by the degree (nm) of Hermite polynomials. The evolution of the soliton-lattice breather appears the full breathing cycle, and the interval between solitons oscillates periodically as the wave propagates. The amplitude and width change periodically; however, they exist opposite trend in the periodic modulation system.

## Keywords

Vector Hermite–Gaussian spatial solitons (2+1)-dimensional coupled nonlocal nonlinear Schrödinger equation Strongly nonlocal nonlinear media

## Notes

### Acknowledgments

This work was supported by the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y201120994.

## References

1. 1.
Lü, X., Lin, F., Qi, F.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton. Appl. Math. Model. 39, 3221–3226 (2015)
2. 2.
Biswas, A., Khan, K.R., Milovic, D., Belic, M.: Bright and dark solitons in optical metamaterials. Optik 125, 3299–3302 (2014)
3. 3.
Biswas, A., Mirzazadeh, M., Eslami, M.: Soliton solution of generalized chiral nonlinear Schrödinger’s equation with time-dependent coefficients. Acta Phys. Pol. B 45, 849–866 (2014)
4. 4.
Zhou, Q., Yu, H., Xiong, X.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80, 983–987 (2015)
5. 5.
Jiang, H.J., Xiang, J.J., Dai, C.Q., Wang, Y.Y.: Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels. Nonlinear Dyn. 75, 201–207 (2014)
6. 6.
Zhou, Q., Yao, D.Z., Chen, F., Li, W.W.: Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60, 854–859 (2013)
7. 7.
Savescu, M., Bhrawy, Ali H., Hilal, E.M., Alshaery, A.A., Moraru, L., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for parabolic law nonlinearity. Optoelectron. Adv. Mater. Rapid Commun. 9, 10–13 (2015)Google Scholar
8. 8.
Zhou, Q., Zhu, Q.P., Yu, H., Liu, Y.X., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in a cascaded system. Laser Phys. 25, 025402 (2015)
9. 9.
Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445–451 (2014)
10. 10.
Biswas, A., Moosaei, H., Eslami, M., Mirzazadeh, M., Zhou, Q., Bhrawy, A.H.: Optical soliton perturbation with extended Tanh function method. Optoelectron. Adv Mater. Rapid Commun. 8, 1029–1034 (2014)Google Scholar
11. 11.
Vega-Guzman, J., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 1063–1070 (2014)Google Scholar
12. 12.
Zhou, Q.: Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect. Optik 125, 3142–3144 (2014)
13. 13.
Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Optoelectron. Adv. Mater. 23, 1450014 (2014)Google Scholar
14. 14.
Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 442–459 (2014)
15. 15.
Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Rom. J. Phys. 59, 582–589 (2014)Google Scholar
16. 16.
Zhou, Q., Biswas, A.: Optical solitons in birefringent fibers with parabolic law nonlinearity. Opt. Appl. 44, 399–409 (2014)Google Scholar
17. 17.
Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Yao, P., Biswas, A.: Thirring optical solitons in birefringent fibers with spatio-temporal dispersion and Kerr law nonlinearity. Laser Phys. 25, 015402 (2015)
18. 18.
Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)
19. 19.
Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M.: Anjan Biswas: optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)
20. 20.
Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion. Optoelectron. Adv. Mater. Rapid Commun. 17, 74–81 (2015)Google Scholar
21. 21.
Vega-Guzman, J., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 16, 41–46 (2015)
22. 22.
Dai, C.Q., Chen, R.P., Zhang, J.F.: Analytical spatiotemporal similaritons for the generalized (3+1)-dimensional Gross–Pitaevskii equation with an external harmonic trap. Chaos Soliton Fractals 44, 862–870 (2011)
23. 23.
Lai, X.J., Jin, M.Z., Zhang, J.F.: Two-dimensional self-similar rotating azimuthons in strongly nonlocal nonlinear media. Chin. J. Phys. 51, 230–242 (2013)
24. 24.
Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)
25. 25.
Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)
26. 26.
Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3+1)-dimensional cubic–quintic Schrödinger equation in PT-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)
27. 27.
Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov–Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862 (2014)
28. 28.
Dai, C.Q., Wang, Y.Y.: Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrödinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)
29. 29.
Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)
30. 30.
Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equation and fractional coupled Schrödinger. Eur. Phys. J. Plus 129, 260 (2014)Google Scholar
31. 31.
Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys. 261, 244–255 (2014)Google Scholar
32. 32.
Yang, B., Zhong, W.P., Belic, M.R.: Self-similar Hermite–Gaussian spatial solitons in two-dimensional nonlocal nonlinear media. Commun. Theor. Phys. 53, 937–942 (2010)
33. 33.
Zhong, W.P., Belic, M.R., Huang, T.W.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)
34. 34.
Zhou, Q., Yao, D.Z., Ding, S.J., Zhang, Y.F., Chen, F., Chen, F., Liu, X.N.: Spatial optical solitons in fifth order and seventh order weakly nonlocal nonlinear media. Optik 124, 5683–5686 (2013)
35. 35.
Zhou, Q., Zhu, Q.P., Liu, Y.X., Yao, P., Bhrawy, A.H., Moraru, L., Biswas, A.: Bright–dark combo optical solitons with non-local nonlinearity in parabolic law medium. Optoelectron. Adv. Mater. Rapid Commun. 8, 837–839 (2014)Google Scholar
36. 36.
Zhou, Q., Yao, D.Z., Liu, X.N., Chen, F., Ding, S.J., Zhang, Y.F., Chen, F.: Exact solitons in three-dimensional weakly nonlocal nonlinear time-modulated parabolic law media. Opt. Laser Tech. 51, 32–35 (2013)
37. 37.
Wyller, J., Bang, O., Krolikowski, W., Rasmussen, J.J.: Phys. Rev. E 66, 066615 (2002)
38. 38.
Lopez-Aguayo, S., Gutierrez-Vega, J.C.: Opt. Express 15, 18326 (2007)
39. 39.
Yakimenko, A.I., Lashkin, V.M., Prikhodko, O.O.: Phys. Rev. E 73, 066605 (2006)
40. 40.
Zhong, W.P., Yi, L.: Two-dimensional Whittaker solitons in nonlocal nonlinear media. Phys. Rev. A 75, 061801 (2007)
41. 41.
Liang, G., Li, H.G.: Polarized vector spiraling elliptic solitons in nonlocal nonlinear media. Opt. Commun. 352, 39–44 (2015)
42. 42.
Manakov, S.V.: Zh. Eksp. Teor. Fiz. 65, 505 (1973)Google Scholar
43. 43.
Manakov, S.V.: Sov. Phys. JETP 38, 248 (1974)
44. 44.
Chen, Z., Segev, M., Coskun, T., Christodoulides, D.N.: Opt. Lett. 21, 1436–1438 (1996)
45. 45.
Dai, C.Q., Wang, Y.Y., Wang, X.G.: Ultrashort self-similar solutions of the cubic–quintic nonlinear Schrödinger equation with distributed coefficients in the inhomogeneous fiber. J. Phys. A Math. Theor. 44, 155203 (2011)
46. 46.
Dai, C.Q., Zhu, S.Q., Wang, L.L.: Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrödinger equation with distributed coefficients. Europhys. Lett. 92, 24005 (2010)