Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 667–683 | Cite as

Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties

  • Mingyue Cui
  • Wei Liu
  • Hongzhao Liu
  • Hualong Jiang
  • Zhipeng Wang
Original Paper


Based on the uncertain nonlinear kinematic model of the differential-driving mobile robots, an adaptive sliding mode control method is used to design a controller for trajectory tracking of the differential-driving mobile robots with unknown parameter variations and external disturbances. The total uncertainties of the robot are estimated online by an improved linear extended state observer (ESO) with the error compensating term. The adaptive sliding mode controller with the switching gain is adjustable real-time online is developed by selecting the appropriate PID-type sliding surface. The convergence of the tracking errors for wheeled mobile robots is proved by the Lyapunov stability theory. Moreover, the simulation and real experiment results all show that the effectiveness and superiority of the proposed the adaptive sliding mode control method, in comparison with the traditional sliding model control and backstepping control method.


Adaptive sliding model control Extended state observer Trajectory tracking Wheeled mobile robot 



This work was supported by the National Natural Science Foundation (No. U1404614), the Henan Province Education Department Foundation (Nos. 14B120003, 15A413005), the Nanyang Normal University Foundation (Nos. ZX2014085, ZX2015007), the Henan Province Scientific and Technological Foundation (Nos. 122102210403, 142300410184).


  1. 1.
    Staicu, S.: Dynamics equations of a mobile robot provided with caster wheel. Nonlinear Dyn. 58(1–2), 237–248 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Zhong, G., Kobayashi, Y., Emaru, T., et al.: Optimal control of the dynamic stability for robotic vehicles in rough terrain. Nonlinear Dyn. 73(1–12), 981–992 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bazzi, S., Shammas, E., Asmar, D.: A novel method for modeling skidding for systems with non-holonomic constraints. Nonlinear Dyn. 76(2), 1517–1528 (2014)CrossRefGoogle Scholar
  4. 4.
    Kim, Doh-Hyun, Oh, Jun-Ho: Tracking control of a two-wheeled mobile robot using input-output linearization. Control Eng. Pract. 7(3), 369–373 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Jiang, Z.P., Nijmeijev, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33(7), 1393–1399 (1997)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, C.Y., Li, T.H.S., Yeh, Y.C.: EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots. Inf. Sci. 179(1), 180–195 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Chen, C., Li, S., Yeh, Y., Chang, C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166 (2009)CrossRefGoogle Scholar
  8. 8.
    Horacio, M.A., Simon, G.G.: Mobile robot path planning and tracking using simulated annealing and fuzzy logic control. Expert Syst. Appl. 15(3–4), 421–429 (1998)Google Scholar
  9. 9.
    Nunes, U., Bento, L.C.: Data fusion and path-following controllers comparison for autonomous vehicles. Nonlinear Dyn. 49(4), 445–462 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Hendzel, Z.: An adaptive critic neural network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50(4), 849–855 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Ranjbarsahraei, B., Roopaei, M., Khosravi, S.: Adaptive fuzzy formation control for a swarm of nonholonomic differentially driven vehicles. Nonlinear Dyn. 67(4), 2747–2757 (2012)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Jinkun, Liu: MATLAB Simulation for Sliding Mode Control. Tsinghua University Press, Beijing, China (2005)Google Scholar
  13. 13.
    Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hu, Z., Li, Z., Bicker, R., Marshall, C.: Robust output tracking control of nonholonomic mobile robots via higher order sliding mode. Nonlinear Stud. 11(1), 23–35 (2004)MathSciNetGoogle Scholar
  15. 15.
    Corradini, M.L., Orlando, G.: Control of mobile robots with uncertainties in the dynamic model: a discrete time sliding mode approach with experimental results. Control Eng. Pract. 10(1), 23–34 (2002)Google Scholar
  16. 16.
    Kukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)CrossRefGoogle Scholar
  17. 17.
    Do, K.D., Jiang, Z.P., Pan, J.: Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Trans. Autom. Control. 49(7), 1147–1151 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kim, M.S., Shin, J.H., Hong, S.G., Lee, J.J.: Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances. Mechatronics 13(5), 507–519 (2003)CrossRefGoogle Scholar
  19. 19.
    Kececi, E.F., Gang, T.: Adaptive vehicle skid control. Mechatronics 16(5), 291–301 (2006)CrossRefGoogle Scholar
  20. 20.
    Bobtsov, A., Nikolaev, N., Slita, O.: Adaptive control of libration angle of a satellite. Mechatronics 17(4–5), 271–276 (2007)CrossRefMATHGoogle Scholar
  21. 21.
    Wu, J., Pu, D., Ding, H.: Adaptive robust motion control of SISO nonlinear systems with implementation on linear motors. Mechatronics 17(4–5), 263–270 (2007)CrossRefGoogle Scholar
  22. 22.
    Ouyang, P.R., Zhang, W.J., Gupta, M.M.: An adaptive switching learning control method for trajectory tracking of robot manipulators. Mechatronics 16(1), 51–61 (2006)CrossRefGoogle Scholar
  23. 23.
    Li, Z., Ge, S.S., Adams, M., Wijesoma, W.S.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776–784 (2008)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Li, Z., Tao, P.Y., Ge, S.S., Adams, M., Wijesoma, W.S.: Robust adaptive control of cooperating mobile manipulators with relative motion. IEEE Trans. Syst. Man Cybern. Part B 39(1), 103–116 (2009)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators. IEEE Trans. Syst. Man Cybern. Part B 37(3), 607–616 (2007)CrossRefGoogle Scholar
  26. 26.
    Lim, T.M., Zhang, D.: Control of Lorentz force-type self-bearing motors with hybrid PID and robust model reference adaptive control scheme. Mechatronics 18(1), 35–45 (2008)CrossRefGoogle Scholar
  27. 27.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991)MATHGoogle Scholar
  28. 28.
    Jin-qing, H.A.N.: Active Disturbance Rejection Control Technique—The Technique for Estimating and Compensating the Uncertainties. China National Defence Industry Press, Beijing (2009)Google Scholar
  29. 29.
    Rongben, W.A.N.G., Jiangwei, C.H.U., Feng, Y., You, F., Ji, S.: Design for a new type of AGV based on machine vision. Chin. J. Mech. Eng. 38(11), 135–138 (2002)CrossRefGoogle Scholar
  30. 30.
    Yao, J.Y., Jiao, Z.X., Ma, D.: Adaptive robust control of DC motors with extended state observer. IEEE Trans. Ind. Electron. 61(7), 3630–3637 (2014)CrossRefGoogle Scholar
  31. 31.
    Stepanenko, Y.U.R.Y., Cao, Y.O.N.G., SU, C.H.U.N.-Y.I.: Variable structure control of robotic manipulator with PID sliding surfaces. Int. J. Robust Nonlinear Control 8(1), 79–90 (1998)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Jun, J.I.A.N.G., Qing-wei, C.H.E.N., Jian, G.U.O., Wei-hua, F.A.N.: Sliding mode stable tracking control for mobile satellite communication system based on a new reaching law. Control Decis. 26(12), 1904–1908 (2011)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mingyue Cui
    • 1
    • 2
  • Wei Liu
    • 1
    • 2
  • Hongzhao Liu
    • 1
    • 2
  • Hualong Jiang
    • 1
  • Zhipeng Wang
    • 1
    • 2
  1. 1.College of Physical and Electronic EngineeringNanyang Normal UniversityNanyangChina
  2. 2.Oil equipment intelligent control engineering laboratory of Henan provinceNanyangChina

Personalised recommendations