Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 347–354 | Cite as

Generalized variational problems and Birkhoff equations

Original Paper


In this paper, we present a generalized fractional Birkhoffian equations in terms of Agrawal’s new operators. By choosing different parameter set, we may obtain six kinds of Birkhoffian equations in terms of Riemann–Liouville, Caputo, Riesz and Riesz–Caputo fractional derivatives, respectively. The previous results can be obtained as a special case.


Birkhoffian equation Calculus of variations Fractional derivatives 



We express our sincere thinks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 10872037, 11742063 and the Natural Science Foundation of Anhui Province under Grant No. 070416226.


  1. 1.
    Lanczos, C.: The Variational Principles of Mechanics. Oxford University Press, London (1957)MATHGoogle Scholar
  2. 2.
    Logan, J.D.: Invariant Variational Principles. Academic Press, New York (1977)Google Scholar
  3. 3.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATHGoogle Scholar
  4. 4.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATHGoogle Scholar
  5. 5.
    Gao, X.Y.: Comment on “Solitons, Bäcklund transformation, and Lax pair for the \((2+1)\)-dimensional Boiti–Leon–Pempinelli equation for the water waves” [J. Math. Phys. 51, 093519 (2010)]. J. Math. Phys. 56, 014101 (2015)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Gao, X.Y.: Variety of the cosmic plasmas: general variable-coefficient Korteweg–de Vries–Burgers equation with experimental/observational support. EPL 110, 15002 (2015)CrossRefGoogle Scholar
  7. 7.
    Gao, X.Y.: Bäcklund transformation and shock-wave-type solutions for a generalized \((3+1)\)-dimensional variable-coefficient B-type Kadomtsev–Petviasvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhen, H.L., Tian, B., Wang, Y.F., Liu, D.Y.: Soliton solutions and chaotic motions of the Zakharov equations for the Langmuir wave in the plasma. Phys. Plasmas 22, 032307 (2015)CrossRefGoogle Scholar
  9. 9.
    Sun, W.R., Tian, B., Jiang, Y., Zhen, H.L.: Optical rogue waves associated with the negative coherent coupling in an isotropic medium. Phys. Rev. E 91, 023205 (2015)CrossRefGoogle Scholar
  10. 10.
    Wang, Y.F., Tian, B., Wang, M., Zhen, H.L.: Solitons via an auxiliary function for an inhomogeneous higher-order nonlinear Schrödinger equation in optical fiber communications. Nonlinear Dyn. 79, 721–729 (2015)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, Longhorne (1993)MATHGoogle Scholar
  12. 12.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Eqautions of Fractional orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)Google Scholar
  13. 13.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATHGoogle Scholar
  14. 14.
    Hilfer, R.: Applications of Fractals and Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2002)Google Scholar
  15. 15.
    Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2004)Google Scholar
  17. 17.
    EI-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)Google Scholar
  18. 18.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publisher Inc, Connecticut (2006)Google Scholar
  19. 19.
    Frederico, G.S.F., Torres, D.F.M.: Constants of motion for fractional action-like variational problems. Int. J. Appl. Math. 19(1), 97–104 (2006)MathSciNetMATHGoogle Scholar
  20. 20.
    Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2007)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Atanacković, T.M.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41, 095201 (2008)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Zhou, S., Fu, H., Fu, J.L.: Symetries of Hamiltonian systems with fractional derivatives. Sci. China Ser. E 54(10), 1847–1853 (2011)Google Scholar
  25. 25.
    Li, L., Luo, S.K.: Fractional generalized Hamiltonian systems. Acta Mech. (2013). doi: 10.1007/s00707-013-0826-1
  26. 26.
    Zhang, Y.: Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives. Chin. Phys. 21(8), 084502 (2012)CrossRefGoogle Scholar
  27. 27.
    Kong, X.L., Wu, H.B., Mei, F.X.: Discrete optimal control for Birkhoffian systems. Nonlinear Dyn. 74, 711–719 (2013)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Chen, X.W., Zhao, G.L., Mei, F.X.: A fractional gradient representation of the Poincare equations. Nonlinear Dyn. 73, 579–582 (2013)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)CrossRefMATHGoogle Scholar
  30. 30.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 40, 6287–6303 (2007)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Agrawal, O.P.: Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control 13(9–10), 1217–1237 (2007)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Almeida, R.: Fractional variational problems with the Riesz–Caputo derivative. Appl. Math. Lett. 25, 142–148 (2012)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Birkhoff, G.D.: Dynamical Systems. AMS College Publisher, Providence (1927)MATHGoogle Scholar
  36. 36.
    Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978)Google Scholar
  37. 37.
    Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)CrossRefMATHGoogle Scholar
  38. 38.
    Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997). (in Russian)Google Scholar
  39. 39.
    Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian Systems. Beijing Institute of Technology Press, Beijing (1999). (in Chinese)Google Scholar
  40. 40.
    Mei, F.X.: Noether theory of Birkhoffian system. Sci. China Ser. A 36(12), 1456–1467 (1993)MathSciNetMATHGoogle Scholar
  41. 41.
    Mei, F.X.: On the Birkhoffian mechanics. Int. J. Non-linear Mech. 36(5), 817–834 (2001)CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47(3), 313–322 (2001)CrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Zhang, Y.: Poisson theory and integration method of Birkhoffian systems in the event space. Chin. Phys. B 19(8), 080301 (2010)CrossRefGoogle Scholar
  44. 44.
    Wu, H.B., Mei, F.X.: Type of integral and reduction for a generalized Birkhoffian system. Chin. Phys. B 20(10), 104501 (2011)CrossRefGoogle Scholar
  45. 45.
    Zhang, H.B., Chen, L.Q., Gu, S.L., Liu, C.Z.: The discrete variational principle and the first integrals of Birkhoff systems. Chin. Phys. 16(3), 582–587 (2007)CrossRefGoogle Scholar
  46. 46.
    Zhang, H.B., Gu, S.L.: Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints. Chin. Phys. 11(8), 765–770 (2002)CrossRefGoogle Scholar
  47. 47.
    Zhang, H.B.: Noether theory of Birkhoff systems with unilateral constraints. Acta Phys. Sin. 54(10), 1837–1841 (2001) (in Chinese)Google Scholar
  48. 48.
    Zhang, Y., Zhou,Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. (2013). doi: 10.1007/s11071-013-0831-x
  49. 49.
    Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. (2014). doi: 10.1007/s00707-014-1230-1
  50. 50.
    Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. (2010). doi: 10.1006/j.camwa.2009.08.029

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsAnhui Chaohu UniversityChaohuPeople’s Republic of China

Personalised recommendations