Advertisement

Nonlinear Dynamics

, Volume 82, Issue 4, pp 1979–1987 | Cite as

Exponential synchronization of fractional-order complex networks via pinning impulsive control

  • Fei Wang
  • Yongqing Yang
  • Aihua Hu
  • Xianyun Xu
Original Paper

Abstract

In this paper, a pinning impulsive control scheme is adopted to investigate the synchronization of fractional complex dynamical networks. An effective method has been applied to select controlled nodes at each impulsive constants. Based on the Lyapunov function method and the connection between the exponential function and Mittag-Leffler function, sufficient conditions for achieving exponential synchronization of fractional complex networks have been derived. Finally, numerical simulations are exploited to verify the effectiveness of the theoretical results, and some discussions about synchronization region are given.

Keywords

Fractional-order Complex networks Exponential synchronization Pinning control Impulsive control 

Notes

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China under Grant 11202084, and the Fundamental Research Funds for the Central Universities JUSRP51317B.

References

  1. 1.
    Yuan, J., Ren, Y., Liu, F., Shan, X.M.: Phase transition and collective correlation behavior in the complex computer network. Acta Phys. Sin. 50, 1221–1225 (2001)Google Scholar
  2. 2.
    Xia, Y., Tse, C.K., Lau, F., Man, T.W., Small, M.: Analysis of telephone network traffic based on a complex user network. Phys. A 368, 583–594 (2006)CrossRefGoogle Scholar
  3. 3.
    Rka, A., Jeong, H., Barabsi, A.L.: Internet: diameter of the world-wide web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  4. 4.
    Nara, S., Davis, P., Totsuji, H.: Memory search using complex dynamics in a recurrent neural network model. Neural Netw. 6, 963–973 (1993)CrossRefGoogle Scholar
  5. 5.
    Arianos, S., Bompard, E., Carbone, A., Xue, F.: Power grid vulnerability: a complex network approach. Chaos 19, 013119 (2009)CrossRefGoogle Scholar
  6. 6.
    Lohr, D., Venkov, P., Zlatanova, J.: Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9, 777–787 (1995)Google Scholar
  7. 7.
    Peters, R.J.: Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67, 2307–2317 (2006)CrossRefGoogle Scholar
  8. 8.
    Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010)MATHCrossRefGoogle Scholar
  9. 9.
    Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (in press) Google Scholar
  10. 10.
    Di Paola, M., Fiore, V., Pinnola, F.P., Valenza, A.: On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials. Mech. Mater. 69, 63–70 (2014)CrossRefGoogle Scholar
  11. 11.
    Toledo, H.R., Rico, R.V., Iglesias, S.G.A., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I. Chem. Eng. Sci. 117, 217–228 (2014)CrossRefGoogle Scholar
  12. 12.
    Lü, L., Li, C., Chen, L., Wei, L.: Lag projective synchronization of a class of complex network constituted nodes with chaotic behavior. Commun. Nonlinear Sci. Numer. Simul. 19, 2843–2849 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lü, L., Yu, M., Li, C., Liu, S., Yan, B., Chang, H., Liu, Y.: Projective synchronization of a class of complex network based on high-order sliding mode control. Nonlinear Dyn. 73, 411–416 (2013)MATHCrossRefGoogle Scholar
  14. 14.
    Yu, L., Tu, L., Liu, H.: Adaptive cluster synchronization for a complex dynamical network with delays and stochastic perturbation. Eur. Phys. J. B 86, 1–6 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, J., Zeng, Z., Jiang, P.: Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)CrossRefGoogle Scholar
  16. 16.
    Bao, H., Cao, J.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Zhao, J.: Projective and lag synchronization between general complex networks via impulsive control. Nonlinear Dyn. 67, 2519–2525 (2012)MATHCrossRefGoogle Scholar
  18. 18.
    Qian, Y., Wu, X., Lü, J., Lu, J.A.: Second-order consensus of multi-agent systems with nonlinear dynamics via impulsive control. Neurocomputing 125, 142–147 (2014)CrossRefGoogle Scholar
  19. 19.
    Yu, J., Hu, C., Jiang, H.J., Teng, Z.: Stabilization of nonlinear systems with time-varying delays via impulsive control. Neurocomputing 125, 68–71 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhong, Q.S., Bao, J.F., Yu, Y.B., Liao, X.F.: Impulsive control for fractional-order chaotic systems. Chin. Phys. Lett. 25, 2812–2815 (2008)CrossRefGoogle Scholar
  21. 21.
    Fu, J., Yu, M., Ma, T.D.: Modified impulsive synchronization of fractional order hyperchaotic systems. Chin. Phys. B 20, 120508 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, J.G.: A novel study on the impulsive synchronization of fractional-order chaotic systems. Chin. Phys. B 22, 060510 (2013)CrossRefGoogle Scholar
  23. 23.
    Yu, W.W., Chen, G.R., Lu, J.Q., Kurths, J.: Synchronization via pinning control on general complex networks. SIAM J. Control Optim. 51, 1395–1416 (2013)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhou, B., Liao, X.: Leader-following second-order consensus in multi-agent systems with sampled data via pinning control. Nonlinear Dyn. 78, 555–569 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    DeLellis, P., Bernardo, M., Garofalo, F.: Adaptive pinning control of networks of circuits and systems in Lur’e form. IEEE Trans. Circuits Syst. 60, 3033–3042 (2013)CrossRefGoogle Scholar
  26. 26.
    Tang, Y., Wang, Z.D., Fang, J.A.: Pinning control of fractional-order weighted complex networks. Chaos 19, 013112 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhu, D., Liu, L., Liu, C.: Adaptive pinning synchronization control of the fractional-order chaos nodes in complex networks. Math. Prob. Eng. 2014, 1–7 (2014)Google Scholar
  28. 28.
    Lu, J.Q., Kurths, J., Cao, J.D., Mahdavi, N., Huang, C.: Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23, 285–292 (2012)Google Scholar
  29. 29.
    Yang, X.S., Cao, J.D., Yang, Z.: Synchronization of coupled reaction–diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J. Control Optim. 51, 3486–3510 (2013)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Sun, W., Lü, J.H., Chen, S., Yu, X.: Pinning impulsive control algorithms for complex network. Chaos 24, 013141 (2014)CrossRefGoogle Scholar
  31. 31.
    Hu, J.Q., Liang, J.L., Cao, J.D.: Synchronization of hybrid-coupled heterogeneous networks: pinning control and impulsive control schemes. J. Frankl. Inst. 351, 2600–2622 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhou, X., Luo, K.: Cluster synchronization of stochastic complex networks with markovian switching and time-varying delay via impulsive pinning control. Discrete Dyn. Nat. Soc. 2014, 1–9 (2014)MathSciNetGoogle Scholar
  33. 33.
    Wang, X., Fang, J.A., Dai, A., Cui, W., He, G.: Mean square exponential synchronization for a class of Markovian switching complex networks under feedback control and \(M\)-matrix approach. Neurocomputing 144, 357–366 (2014)CrossRefGoogle Scholar
  34. 34.
    Wu, Z.G., Shi, P., Su, H., Chu, J.D.: Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay. IEEE Trans. Neural Netw. Learn. Syst. 24, 1177–1187 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhou, W., Dai, A., Yang, J., Liu, H., Liu, X.: Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties. Nonlinear Dyn. 78, 15–27 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATHGoogle Scholar
  37. 37.
    Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct. 15, 31–49 (2004)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Srivastava, H.M., Tomovski: Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 211, 198–210 (2009)Google Scholar
  39. 39.
    Wong, R., Zhao, Y.Q.: Exponential asymptotics of the Mittag–Leffler function. Constr. Approxim. 18, 355–385 (2002)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013)CrossRefGoogle Scholar
  41. 41.
    Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Shen, J., James, L.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50, 547–551 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Process Control for Light Industry, Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.School of ScienceJiangnan UniversityWuxiChina

Personalised recommendations