Skip to main content
Log in

The interaction between flutter and buffet in transonic flow

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a kind of nodal-shaped oscillation that is caused by the interaction between flutter and buffet in transonic flow. This response differs from the common limit cycle oscillation that appears in transonic aeroelastic problems. The benchmark active controls technology model with the NACA0012 airfoil is used as the research model. First, both buffet and flutter cases are computed through unsteady Reynolds-averaged Navier–Stokes method and are validated by experimental data. Second, the interaction is found to occur beyond the flutter onset velocity at Mach 0.71. When the pitching angle of a fluttering structure exceeds the buffet onset angle, the high-frequency aerodynamic loads induced by transonic buffet destroy the original flutter model, and then the amplitude of the structure motion decays. When the structural pitching angle is less than the buffet onset angle, the buffet disappears and flutter occurs again. As the process repeats itself, the transonic aeroelastic system displays a nodal-shaped oscillation (divergent–damping–divergent–damping oscillation). Finally, the mechanism of the interaction is discussed by analyzing the energy transportation between the flow and the structure in one cycle of nodal-shaped oscillation, and by observing the variation in the phase-angle difference between the plunging and pitching displacements. In this way, this research provides a new approach to understand flutter suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Steger, J.L., Bailey, H.E.: Calculation of transonic aileron buzz. AIAA J. 3, 249–255 (1980)

    Article  Google Scholar 

  2. Bennett, R.M., Edwards, J.W.: An overview of recent developments in computational aeroelasticity. In: AIAA Paper 1998-2421, AIAA Fluid Dynamics Conference, Albuquerque, NM (1998)

  3. Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Ann. Rev. Fluid Mech. 33, 445–490 (2001)

    Article  Google Scholar 

  4. Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Prog. Aerosp. Sci. 47(2), 135–167 (2011)

    Article  Google Scholar 

  5. Dowell, E.H., Edward, J., Strganac, T.W.: Nonlinear aeroelasticity. J. Aircr. 40(3), 857–874 (2003)

    Article  Google Scholar 

  6. Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37(2), 147–196 (2001)

  7. Chen, G., Sun, J., Li, Y.: Active flutter suppression control law design method based on balanced proper orthogonal decomposition reduced order model. Nonlinear Dyn. 70, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hall, K.C., Thomas, J.P., Dowell, E.H.: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 38(10), 1853–1862 (2000)

    Article  Google Scholar 

  9. Thomas, J.P., Dowell, E.H., Hall, K.C.: Three-dimensional aeroelasticity using proper orthogonal decomposition based reduced order models. J. Aircr. 40(3), 544–551 (2003)

    Article  Google Scholar 

  10. Dowell, E.H., Thomas, J.P., Hall, K.C.: Transonic limit cycle oscillation analysis using reduced order models. J. Fluids Struct. 19(1), 17–27 (2004)

    Article  Google Scholar 

  11. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1–2), 51–117 (2004)

    Article  Google Scholar 

  12. Lucia, D.J., Beran, P.S.: Reduced-order model development using proper orthogonal decomposition and volterra theory. AIAA J. 42(6), 1181–1190 (2004)

    Article  Google Scholar 

  13. Lieu, T., Farhat, C.: Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J. 45(6), 1244–1257 (2007)

    Article  Google Scholar 

  14. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)

    Article  Google Scholar 

  15. Marzocca, P., Silva, W.A., Librescu, L.: Open/closed-loop nonlinear aeroelasticity for airfoils via volterra series approach. AIAA J. 42(4), 673–686 (2004)

    Article  Google Scholar 

  16. Raveh, D.E.: Reduced-order models for nonlinear unsteady aerodynamics. AIAA J. 39(8), 1417–1429 (2001)

    Article  Google Scholar 

  17. Silva, W.: Identification of nonlinear aeroelastic systems based on the volterra theory: progress and opportunity. Nonlinear Dyn. 39(1–2), 25–62 (2005)

    Article  MATH  Google Scholar 

  18. Balajewicz, M., Nitzsche, F., Feszty, D.: Application of multi-Input volterra theory to nonlinear multi-degree-of-freedom aerodynamic systems. AIAA J. 48(1), 56–62 (2010)

    Article  Google Scholar 

  19. Cowan, T.J., Andrew, S.A.J., Gupta, K.K.: Accelerating computational fluid dynamics based aeroelastic predictions using system identification. J. Aircr. 38(1), 81–87 (2001)

    Article  Google Scholar 

  20. Zhang, W., Ye, Z.: Effect of control surface on airfoil flutter in transonic flow. Acta Astronaut. 66, 999–1007 (2010)

    Article  Google Scholar 

  21. Zhang, W., Ye, Z.: Reduced-order-model-based flutter analysis at high angle of attack. J. Aircr. 44(6), 2086–2089 (2007)

    Article  Google Scholar 

  22. Zhang, W., Ye, Z., Zhang, C.: ROM based aeroservoelastic analysis in transonic flow. J. Aircr. 46(6), 2178–2183 (2009)

    Article  Google Scholar 

  23. Zhang, W., Wang, B., Ye, Z.: Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models. AIAA J. 50(5), 1019–1028 (2012)

    Article  Google Scholar 

  24. Thomas, J.P., Dowell, E.H., Hall, K.C.: Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA J. 40(4), 638–646 (2002)

    Article  Google Scholar 

  25. McMullen, M., Jameson, A.: The computational efficiency of non-linear frequency domain methods. J. Comput. Phys. 212(2), 637–661 (2006)

    Article  MATH  Google Scholar 

  26. Timme, S., Badcock, K.: Implicit harmonic balance solver for transonic flow with forced motions. AIAA J. 47(4), 893–901 (2009)

    Article  Google Scholar 

  27. Thomas, J.P., Dowell, E.H., Hall, K.C.: Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA J. 48(1), 19–24 (2010)

    Article  Google Scholar 

  28. Bunton, R.W., Denegri Jr, C.M.: Limit cycle oscillation characteristics of fighter aircraft. J. Aircr. 37(5), 916–918 (2000)

  29. Denegri Jr, C.M., Denegri, M.R.: Limit cycle oscillation prediction using artificial neural networks. J. Guid. Control Dyn. 24(5), 887–895 (2001)

    Article  MathSciNet  Google Scholar 

  30. Edwards, J.W., Schuster, D.M., Spain, C.V., Keller, D.F., Moses, R.W.: MAVRIC flutter model transonic limit cycle oscillation test. In: AIAA Paper, 2001-1291 (2001)

  31. Schewe, G., Knipfer, A., Mai, H., Dietz, G.: Nonlinear Effects in Transonic Flutter. International Forum on Structural Dynamics and Aeroelasticity, Madrid (2001)

    Google Scholar 

  32. Edwards, J.W.: Transonic shock oscillations and wing flutter calculated with an interactive boundary layer coupling method. In: NASA TM-110284 (1996)

  33. Thomas, J.P., Dowell, E.H., Hall, K.C.: Theoretical predictions of limit cycle oscillations for flight flutter testing of the F-16 fighter. J. Aircr. 46(5), 1667–1672 (2009)

    Article  Google Scholar 

  34. Bendiksen, O.: Transonic limit cycle flutter of high-aspect-ratio swept wings. J. Aircr. 45(5), 1522–1533 (2008)

    Article  Google Scholar 

  35. Dowell, E.H., Thomas, J.P., Hall, K.C.: Transonic limit cycle oscillation analysis using reduced order aerodynamic models. J. Fluids Struct. 19, 17–27 (2004)

    Article  Google Scholar 

  36. Beran, P.S., Lucia, D.J., Pettit, C.L.: Reduced-order modeling of limit-cycle oscillation for aeroelastic systems. J. Fluids Struct. 19(5), 575–590 (2004)

    Article  Google Scholar 

  37. Bendiksen, O.O.: Multiple limit cycles in transonic flow and some computational and experimental implications. Paper AVT-152-024. In: NATO AVT-152 Symposium on Limit Cycle Oscillation and Other Amplitude-Limited Self Excited Oscillations, Loen, Norway (2008)

  38. Dowell, E.H.: Some recent advance in nonlinear aeroelasticity: fluid–structure interaction in the 21st century. In: AIAA 2010-3137 (2010)

  39. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R., Vasconcellos, R.: An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 71, 159–173 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Dowell, E.H., Tang, D.M.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40(9), 1697–1707 (2002)

    Article  Google Scholar 

  41. Xu, B., Zhang, W., Ma, J.M.: Stability and Hopf bifurcation of a two-dimensional supersonic airfoil with a time-delayed feedback control surface. Nonlinear Dyn. 77, 819–837 (2014)

    Article  MathSciNet  Google Scholar 

  42. Lee, B.H.K., Murty, H., Jiang, H.: Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J. 32(4), 789–796 (1994)

    Article  MATH  Google Scholar 

  43. Goncalves, E., Houdeville, R.: Turbulence model and numerical scheme assessment for buffet computations. Int. J. Numer. Methods Fluids 46(11), 1127–1152 (2004)

    Article  MATH  Google Scholar 

  44. Kourta, A., Petit, G., Courty, J.C.: Buffeting in transonic flow prediction using timedependent turbulence model. Int. J. Numer. Methods Fluids 49(2), 171–182 (2005)

    Article  MATH  Google Scholar 

  45. Thiery, M., Coustols, E.: Numerical prediction of shock induced oscillations over a 2D airfoil: influence of turbulence modelling and test section walls. Int. J. Heat Fluid Flow 27(4), 661–670 (2006)

    Article  Google Scholar 

  46. Xiao, Q., Tsai, H.M., Liu, F.: Numerical study of transonic buffet on a supercritical airfoil. AIAA J. 44(3), 620–628 (2006)

    Article  Google Scholar 

  47. Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Article  Google Scholar 

  48. Chen, L.W., Xu, C.Y., Lu, X.Y.: Numerical investigation of the compressible flow past an aerofoil. J. Fluid Mech. 643, 97–126 (2010)

    Article  MATH  Google Scholar 

  49. Garnier, E., Sagaut, P., Deville, M.: Large eddy simulation of shock/boundary-layer interaction. AIAA J. 40(10), 1935–1944 (2002)

    Article  Google Scholar 

  50. Wollblad, C., Davidson, L., Eriksson, L.E.: Investigation of large scale shock movement in transonic flow. Int. J. Heat Fluid Flow 31(4), 528–535 (2010)

    Article  Google Scholar 

  51. Sengupta, T.K., Bhole, A., Sreejith, N.A.: Direct numerical simulation of 2D transonic flows around airfoils. Comput. Fluids 88, 19–37 (2013)

    Article  MathSciNet  Google Scholar 

  52. Crouch, J.D., Garbaruk, A., Magidov, D.: Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224(2), 924–940 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Crouch, J.D., Garbaruk, A., Magidov, D.: Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357–369 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Raveh, D.E.: Numerical study of an oscillating airfoil in transonic buffeting flows. AIAA J. 47(3), 505–515 (2009)

    Article  Google Scholar 

  55. Raveh, D.E., Dowell, E.H.: Frequency lock-in phenomenon for oscillating airfoils in buffeting flows. J. Fluids Struct. 27(1), 89–104 (2011)

    Article  Google Scholar 

  56. Iovnovich, M., Raveh, D.E.: Transonic unsteady aerodynamics in the vicinity of shock-buffet instability. J. Fluids Struct. 29, 131–142 (2012)

    Article  Google Scholar 

  57. Nitzsche, J.: A Numerical Study on Aerodynamic Resonance in Transonic Separated Flow. International Forum on Aeroelasticity and Structural Dynamics, Seattle (2009)

    Google Scholar 

  58. Hartmann, A., Klaas, M., Schröder, W.: Coupled airfoil heave/pitch oscillations at buffet flow. AIAA J. 51(7), 1542–1552 (2013)

    Article  Google Scholar 

  59. Raveh, D.E., Dowell, E.H.: Aeroelastic response of elastically suspended airfoil systems in transonic buffeting flows. J. Fluids Struct. 52(5), 926–934 (2014)

    Google Scholar 

  60. Geissler, W.: Numerical study of buffet and transonic flutter on the NLR 7301 airfoil. Aerosp. Sci. Technol. 7, 540–550 (2003)

    Article  MATH  Google Scholar 

  61. Rivera, J.A., Jr., Dansberry, B.E., Bennett, R.M., Durham, M.H., Silva, W.A.: NACA0012 benchmark model experimental flutter results with unsteady pressure distributions. In: NASA Technical Memorandum 107581 (1992)

  62. Barbut, G., Braza, M., Miller, M.: NACA0012 with aileron. In: Doerffer, P., et al. (eds.) Unsteady Effects of Shock Wave Induced Separation, pp. 101–131. Springer, Berlin (2011)

  63. Zhang, L.P., Wang, Z.J.: A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes. Comput. Fluids 33(7), 891–916 (2004)

    Article  MATH  Google Scholar 

  64. Rendall, T.C., Allen, C.B.: Fluid–structure interpolation and mesh motion using radial basis function. Int. J. Numer. Methods Eng. 74(10), 1519–1559 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  65. Zhang, W.W., Jang, Y.W., Ye, Z.Y.: Two better loosely coupled simulation algorithms of CFD based aeroelastic simulation. Eng. Appl. Comput. Fluid Mech. 1(4), 253–262 (2007)

    Google Scholar 

  66. Soda, A., Ralph, V.: Analysis of transonic aerodynamic interference in the wing-nacelle region for a generic transport aircraft. In: The Proceedings of IFSAD 2005, International Forum on Aeroelasticity and Structural Dynamics. DLR, Munich, Germany (2005)

  67. Zhang, W., Ye, Z.: Control law design for transonic aeroservoelasticity. Aerosp. Sci. Technol. 11(2–3), 136–145 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The paper is supported by the National Natural Science Foundation of China (Grant No. 11172237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Gao, C., Liu, Y. et al. The interaction between flutter and buffet in transonic flow. Nonlinear Dyn 82, 1851–1865 (2015). https://doi.org/10.1007/s11071-015-2282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2282-z

Keywords

Navigation