Advertisement

Nonlinear Dynamics

, Volume 82, Issue 4, pp 1851–1865 | Cite as

The interaction between flutter and buffet in transonic flow

  • Weiwei Zhang
  • Chuanqiang Gao
  • Yilang Liu
  • Zhengyin Ye
  • Yuewen Jiang
Original Paper

Abstract

This paper presents a kind of nodal-shaped oscillation that is caused by the interaction between flutter and buffet in transonic flow. This response differs from the common limit cycle oscillation that appears in transonic aeroelastic problems. The benchmark active controls technology model with the NACA0012 airfoil is used as the research model. First, both buffet and flutter cases are computed through unsteady Reynolds-averaged Navier–Stokes method and are validated by experimental data. Second, the interaction is found to occur beyond the flutter onset velocity at Mach 0.71. When the pitching angle of a fluttering structure exceeds the buffet onset angle, the high-frequency aerodynamic loads induced by transonic buffet destroy the original flutter model, and then the amplitude of the structure motion decays. When the structural pitching angle is less than the buffet onset angle, the buffet disappears and flutter occurs again. As the process repeats itself, the transonic aeroelastic system displays a nodal-shaped oscillation (divergent–damping–divergent–damping oscillation). Finally, the mechanism of the interaction is discussed by analyzing the energy transportation between the flow and the structure in one cycle of nodal-shaped oscillation, and by observing the variation in the phase-angle difference between the plunging and pitching displacements. In this way, this research provides a new approach to understand flutter suppression.

Keywords

Aeroelasticity Transonic flow Flutter Buffet Interaction 

Notes

Acknowledgments

The paper is supported by the National Natural Science Foundation of China (Grant No. 11172237).

References

  1. 1.
    Steger, J.L., Bailey, H.E.: Calculation of transonic aileron buzz. AIAA J. 3, 249–255 (1980)CrossRefGoogle Scholar
  2. 2.
    Bennett, R.M., Edwards, J.W.: An overview of recent developments in computational aeroelasticity. In: AIAA Paper 1998-2421, AIAA Fluid Dynamics Conference, Albuquerque, NM (1998)Google Scholar
  3. 3.
    Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Ann. Rev. Fluid Mech. 33, 445–490 (2001)CrossRefGoogle Scholar
  4. 4.
    Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Prog. Aerosp. Sci. 47(2), 135–167 (2011)CrossRefGoogle Scholar
  5. 5.
    Dowell, E.H., Edward, J., Strganac, T.W.: Nonlinear aeroelasticity. J. Aircr. 40(3), 857–874 (2003)CrossRefGoogle Scholar
  6. 6.
    Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37(2), 147–196 (2001)Google Scholar
  7. 7.
    Chen, G., Sun, J., Li, Y.: Active flutter suppression control law design method based on balanced proper orthogonal decomposition reduced order model. Nonlinear Dyn. 70, 1–12 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hall, K.C., Thomas, J.P., Dowell, E.H.: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 38(10), 1853–1862 (2000)CrossRefGoogle Scholar
  9. 9.
    Thomas, J.P., Dowell, E.H., Hall, K.C.: Three-dimensional aeroelasticity using proper orthogonal decomposition based reduced order models. J. Aircr. 40(3), 544–551 (2003)CrossRefGoogle Scholar
  10. 10.
    Dowell, E.H., Thomas, J.P., Hall, K.C.: Transonic limit cycle oscillation analysis using reduced order models. J. Fluids Struct. 19(1), 17–27 (2004)CrossRefGoogle Scholar
  11. 11.
    Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1–2), 51–117 (2004)CrossRefGoogle Scholar
  12. 12.
    Lucia, D.J., Beran, P.S.: Reduced-order model development using proper orthogonal decomposition and volterra theory. AIAA J. 42(6), 1181–1190 (2004)CrossRefGoogle Scholar
  13. 13.
    Lieu, T., Farhat, C.: Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J. 45(6), 1244–1257 (2007)CrossRefGoogle Scholar
  14. 14.
    Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)CrossRefGoogle Scholar
  15. 15.
    Marzocca, P., Silva, W.A., Librescu, L.: Open/closed-loop nonlinear aeroelasticity for airfoils via volterra series approach. AIAA J. 42(4), 673–686 (2004)CrossRefGoogle Scholar
  16. 16.
    Raveh, D.E.: Reduced-order models for nonlinear unsteady aerodynamics. AIAA J. 39(8), 1417–1429 (2001)CrossRefGoogle Scholar
  17. 17.
    Silva, W.: Identification of nonlinear aeroelastic systems based on the volterra theory: progress and opportunity. Nonlinear Dyn. 39(1–2), 25–62 (2005)zbMATHCrossRefGoogle Scholar
  18. 18.
    Balajewicz, M., Nitzsche, F., Feszty, D.: Application of multi-Input volterra theory to nonlinear multi-degree-of-freedom aerodynamic systems. AIAA J. 48(1), 56–62 (2010)CrossRefGoogle Scholar
  19. 19.
    Cowan, T.J., Andrew, S.A.J., Gupta, K.K.: Accelerating computational fluid dynamics based aeroelastic predictions using system identification. J. Aircr. 38(1), 81–87 (2001)CrossRefGoogle Scholar
  20. 20.
    Zhang, W., Ye, Z.: Effect of control surface on airfoil flutter in transonic flow. Acta Astronaut. 66, 999–1007 (2010)CrossRefGoogle Scholar
  21. 21.
    Zhang, W., Ye, Z.: Reduced-order-model-based flutter analysis at high angle of attack. J. Aircr. 44(6), 2086–2089 (2007)CrossRefGoogle Scholar
  22. 22.
    Zhang, W., Ye, Z., Zhang, C.: ROM based aeroservoelastic analysis in transonic flow. J. Aircr. 46(6), 2178–2183 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhang, W., Wang, B., Ye, Z.: Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models. AIAA J. 50(5), 1019–1028 (2012)CrossRefGoogle Scholar
  24. 24.
    Thomas, J.P., Dowell, E.H., Hall, K.C.: Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA J. 40(4), 638–646 (2002)CrossRefGoogle Scholar
  25. 25.
    McMullen, M., Jameson, A.: The computational efficiency of non-linear frequency domain methods. J. Comput. Phys. 212(2), 637–661 (2006)zbMATHCrossRefGoogle Scholar
  26. 26.
    Timme, S., Badcock, K.: Implicit harmonic balance solver for transonic flow with forced motions. AIAA J. 47(4), 893–901 (2009)CrossRefGoogle Scholar
  27. 27.
    Thomas, J.P., Dowell, E.H., Hall, K.C.: Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA J. 48(1), 19–24 (2010)CrossRefGoogle Scholar
  28. 28.
    Bunton, R.W., Denegri Jr, C.M.: Limit cycle oscillation characteristics of fighter aircraft. J. Aircr. 37(5), 916–918 (2000)Google Scholar
  29. 29.
    Denegri Jr, C.M., Denegri, M.R.: Limit cycle oscillation prediction using artificial neural networks. J. Guid. Control Dyn. 24(5), 887–895 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Edwards, J.W., Schuster, D.M., Spain, C.V., Keller, D.F., Moses, R.W.: MAVRIC flutter model transonic limit cycle oscillation test. In: AIAA Paper, 2001-1291 (2001)Google Scholar
  31. 31.
    Schewe, G., Knipfer, A., Mai, H., Dietz, G.: Nonlinear Effects in Transonic Flutter. International Forum on Structural Dynamics and Aeroelasticity, Madrid (2001)Google Scholar
  32. 32.
    Edwards, J.W.: Transonic shock oscillations and wing flutter calculated with an interactive boundary layer coupling method. In: NASA TM-110284 (1996)Google Scholar
  33. 33.
    Thomas, J.P., Dowell, E.H., Hall, K.C.: Theoretical predictions of limit cycle oscillations for flight flutter testing of the F-16 fighter. J. Aircr. 46(5), 1667–1672 (2009)CrossRefGoogle Scholar
  34. 34.
    Bendiksen, O.: Transonic limit cycle flutter of high-aspect-ratio swept wings. J. Aircr. 45(5), 1522–1533 (2008)CrossRefGoogle Scholar
  35. 35.
    Dowell, E.H., Thomas, J.P., Hall, K.C.: Transonic limit cycle oscillation analysis using reduced order aerodynamic models. J. Fluids Struct. 19, 17–27 (2004)CrossRefGoogle Scholar
  36. 36.
    Beran, P.S., Lucia, D.J., Pettit, C.L.: Reduced-order modeling of limit-cycle oscillation for aeroelastic systems. J. Fluids Struct. 19(5), 575–590 (2004)CrossRefGoogle Scholar
  37. 37.
    Bendiksen, O.O.: Multiple limit cycles in transonic flow and some computational and experimental implications. Paper AVT-152-024. In: NATO AVT-152 Symposium on Limit Cycle Oscillation and Other Amplitude-Limited Self Excited Oscillations, Loen, Norway (2008)Google Scholar
  38. 38.
    Dowell, E.H.: Some recent advance in nonlinear aeroelasticity: fluid–structure interaction in the 21st century. In: AIAA 2010-3137 (2010)Google Scholar
  39. 39.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R., Vasconcellos, R.: An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 71, 159–173 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Dowell, E.H., Tang, D.M.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40(9), 1697–1707 (2002)CrossRefGoogle Scholar
  41. 41.
    Xu, B., Zhang, W., Ma, J.M.: Stability and Hopf bifurcation of a two-dimensional supersonic airfoil with a time-delayed feedback control surface. Nonlinear Dyn. 77, 819–837 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Lee, B.H.K., Murty, H., Jiang, H.: Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J. 32(4), 789–796 (1994)zbMATHCrossRefGoogle Scholar
  43. 43.
    Goncalves, E., Houdeville, R.: Turbulence model and numerical scheme assessment for buffet computations. Int. J. Numer. Methods Fluids 46(11), 1127–1152 (2004)zbMATHCrossRefGoogle Scholar
  44. 44.
    Kourta, A., Petit, G., Courty, J.C.: Buffeting in transonic flow prediction using timedependent turbulence model. Int. J. Numer. Methods Fluids 49(2), 171–182 (2005)zbMATHCrossRefGoogle Scholar
  45. 45.
    Thiery, M., Coustols, E.: Numerical prediction of shock induced oscillations over a 2D airfoil: influence of turbulence modelling and test section walls. Int. J. Heat Fluid Flow 27(4), 661–670 (2006)CrossRefGoogle Scholar
  46. 46.
    Xiao, Q., Tsai, H.M., Liu, F.: Numerical study of transonic buffet on a supercritical airfoil. AIAA J. 44(3), 620–628 (2006)CrossRefGoogle Scholar
  47. 47.
    Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)CrossRefGoogle Scholar
  48. 48.
    Chen, L.W., Xu, C.Y., Lu, X.Y.: Numerical investigation of the compressible flow past an aerofoil. J. Fluid Mech. 643, 97–126 (2010)zbMATHCrossRefGoogle Scholar
  49. 49.
    Garnier, E., Sagaut, P., Deville, M.: Large eddy simulation of shock/boundary-layer interaction. AIAA J. 40(10), 1935–1944 (2002)CrossRefGoogle Scholar
  50. 50.
    Wollblad, C., Davidson, L., Eriksson, L.E.: Investigation of large scale shock movement in transonic flow. Int. J. Heat Fluid Flow 31(4), 528–535 (2010)CrossRefGoogle Scholar
  51. 51.
    Sengupta, T.K., Bhole, A., Sreejith, N.A.: Direct numerical simulation of 2D transonic flows around airfoils. Comput. Fluids 88, 19–37 (2013)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Crouch, J.D., Garbaruk, A., Magidov, D.: Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224(2), 924–940 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Crouch, J.D., Garbaruk, A., Magidov, D.: Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357–369 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    Raveh, D.E.: Numerical study of an oscillating airfoil in transonic buffeting flows. AIAA J. 47(3), 505–515 (2009)CrossRefGoogle Scholar
  55. 55.
    Raveh, D.E., Dowell, E.H.: Frequency lock-in phenomenon for oscillating airfoils in buffeting flows. J. Fluids Struct. 27(1), 89–104 (2011)CrossRefGoogle Scholar
  56. 56.
    Iovnovich, M., Raveh, D.E.: Transonic unsteady aerodynamics in the vicinity of shock-buffet instability. J. Fluids Struct. 29, 131–142 (2012)CrossRefGoogle Scholar
  57. 57.
    Nitzsche, J.: A Numerical Study on Aerodynamic Resonance in Transonic Separated Flow. International Forum on Aeroelasticity and Structural Dynamics, Seattle (2009)Google Scholar
  58. 58.
    Hartmann, A., Klaas, M., Schröder, W.: Coupled airfoil heave/pitch oscillations at buffet flow. AIAA J. 51(7), 1542–1552 (2013)CrossRefGoogle Scholar
  59. 59.
    Raveh, D.E., Dowell, E.H.: Aeroelastic response of elastically suspended airfoil systems in transonic buffeting flows. J. Fluids Struct. 52(5), 926–934 (2014)Google Scholar
  60. 60.
    Geissler, W.: Numerical study of buffet and transonic flutter on the NLR 7301 airfoil. Aerosp. Sci. Technol. 7, 540–550 (2003)zbMATHCrossRefGoogle Scholar
  61. 61.
    Rivera, J.A., Jr., Dansberry, B.E., Bennett, R.M., Durham, M.H., Silva, W.A.: NACA0012 benchmark model experimental flutter results with unsteady pressure distributions. In: NASA Technical Memorandum 107581 (1992)Google Scholar
  62. 62.
    Barbut, G., Braza, M., Miller, M.: NACA0012 with aileron. In: Doerffer, P., et al. (eds.) Unsteady Effects of Shock Wave Induced Separation, pp. 101–131. Springer, Berlin (2011)Google Scholar
  63. 63.
    Zhang, L.P., Wang, Z.J.: A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes. Comput. Fluids 33(7), 891–916 (2004)zbMATHCrossRefGoogle Scholar
  64. 64.
    Rendall, T.C., Allen, C.B.: Fluid–structure interpolation and mesh motion using radial basis function. Int. J. Numer. Methods Eng. 74(10), 1519–1559 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Zhang, W.W., Jang, Y.W., Ye, Z.Y.: Two better loosely coupled simulation algorithms of CFD based aeroelastic simulation. Eng. Appl. Comput. Fluid Mech. 1(4), 253–262 (2007)Google Scholar
  66. 66.
    Soda, A., Ralph, V.: Analysis of transonic aerodynamic interference in the wing-nacelle region for a generic transport aircraft. In: The Proceedings of IFSAD 2005, International Forum on Aeroelasticity and Structural Dynamics. DLR, Munich, Germany (2005)Google Scholar
  67. 67.
    Zhang, W., Ye, Z.: Control law design for transonic aeroservoelasticity. Aerosp. Sci. Technol. 11(2–3), 136–145 (2007)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Weiwei Zhang
    • 1
  • Chuanqiang Gao
    • 1
  • Yilang Liu
    • 1
  • Zhengyin Ye
    • 1
  • Yuewen Jiang
    • 2
  1. 1.School of AeronauticsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Engineering ScienceUniversity of OxfordOxfordEngland, UK

Personalised recommendations