Skip to main content
Log in

Adaptive nonlinear controller for stabilizing saddle-type steady states of dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An adaptive feedback method for stabilizing unknown saddle- type steady states of dynamical systems is described. Many other techniques developed so far use unstable linear filters to track and control the saddles. In contrast, the novel controller is an essentially nonlinear unit. It implements the Heaviside step function (piecewise constant function) and minimizes the feedback control force to move the error into a very small tolerance gap. Within the tolerance gap, the reference point has fixed coordinates. In this sense, the method is somewhat similar (except the fact that it automatically locates unknown steady states) to the conventional proportional feedback technique, providing an advantage of a simpler analysis. The method has been applied analytically, numerically and experimentally to two different nonlinear dynamical systems, namely the second-order damped non-driven Duffing system and the third-order chaotic Lorenz system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuo, B.C.: Automatic Control Systems. Prentice Hall, Englewood Cliffs, New Jersey (1995)

    Google Scholar 

  2. Ogata, K.: Modern Control Engineering. Prentice Hall, Englewood Cliffs, New Jersey (2010)

    Google Scholar 

  3. Bielawski, S., Bouazaoui, M., Derozier, D., Glorieux, P.: Stabilization and characterization of unstable steady states in a laser. Phys. Rev. A 47, 3276–3279 (1993)

    Article  Google Scholar 

  4. Johnston, G.A., Hunt, E.R.: Derivative control of the steady state in Chua’s circuit driven in the chaotic region. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 833–835 (1993)

    Article  MATH  Google Scholar 

  5. Parmananda, P., Rhode, M.A., Johnson, G.A., Rollins, R.W., Dewald, H.D., Markworth, A.J.: Stabilization of unstable steady state in an electrochemical system using derivative control. Phys. Rev. E 49, 5007–5013 (1994)

    Article  Google Scholar 

  6. Rulkov, N.F., Tsimring, L.S., Abarbanel, H.D.I.: Tracking unstable orbits in chaos using dissipative feedback control. Phys. Rev. E 50, 314–324 (1994)

    Article  Google Scholar 

  7. Schenk zu Schweinsberg, A., Dressler, U.: Characterization and stabilization of the unstable fixed points of a frequency doubled Nd:YAG laser. Phys. Rev. E 63, 056210 (2001)

    Article  Google Scholar 

  8. Huijberts, H.: Linear controllers for the stabilization of unknown steady states of chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 2246–2254 (2006)

    Article  MathSciNet  Google Scholar 

  9. Ciofini, M., Labate, A., Meucci, R., Galanti, M.: Stabilization of unstable fixed points in the dynamics of a laser with feedback. Phys. Rev. E 60, 398–402 (1999)

    Article  Google Scholar 

  10. Meucci, R., Ciofini, M., Abbate, R.: Suppressing chaos in lasers by negative feedback. Phys. Rev. E 53, R5537–5540 (1996)

    Article  Google Scholar 

  11. Ahlborn, A., Parlitz, U.: Chaos control using notch filter feedback. Phys. Rev. Lett. 96, 034102 (2006)

    Article  Google Scholar 

  12. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–427 (1992)

    Article  Google Scholar 

  13. Pyragas, K.: Control of chaos via extended delay feedback. Phys. Lett. A 206, 323–330 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang, A., Bienfang, J.C., Hall, G.M., Gardner, J.R., Gauthier, D.J.: Stabilizing unstable steady states using extended time-delay autosynchronization. Chaos 8, 782–790 (1998)

    Article  MATH  Google Scholar 

  15. Hövel, P., Schöll, E.: Control of unstable steady states by time delayed feedback methods. Phys. Rev. E 72, 046203 (2005)

    Article  Google Scholar 

  16. Yanchuk, S., Wolfrum, M., Hövel, P., Schöll, E.: Control of unstable steady states by long delay feedback. Phys. Rev. E 74, 026201 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hövel, P.: Control of Complex Nonlinear Systems with Delay (Springer Theses) Chapter 3. Control of Steady States. Springer, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  18. Ding, Y., Jiang, W., Wang, H.: Delayed feedback control and bifurcation analysis of Rössler chaotic system. Nonlinear Dyn. 61, 707–715 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rezaie, B., Motlagh, M.-R.J.: An adaptive delayed feedback control method for stabilizing chaotic time-delayed system. Nonlinear Dyn. 64, 167–176 (2011)

    Article  MATH  Google Scholar 

  20. Gjurchinovski, A., Jungling, T., Urumov, V., Schöll, E.: Delayed feedback control of unstable steady states with high-frequency modulation of delay. Phys. Rev. E 88, 032912 (2013)

    Article  Google Scholar 

  21. Zhou, J., Yang, D.: Chaos control of a new 3D autonomous syustem by stability transformation method. Nonlinear Dyn. 73, 565–577 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pyragas, K., Pyragas, V., Kiss, I.Z., Hudson, J.L.: Stabilizing and tracking unknown steady states of dynamical systems. Phys. Rev. Lett. 89, 244103 (2002)

    Article  Google Scholar 

  23. Pyragas, K., Pyragas, V., Kiss, I.Z., Hudson, J.L.: Adaptive control of unknown unstable steady states of dynamical systems. Phys. Rev. E 70, 026215 (2004)

    Article  Google Scholar 

  24. Braun, D.J.: Adaptive steady-state stabilization for nonlinear dynamical systems. Phys. Rev. E 78, 016213 (2008)

    Article  MathSciNet  Google Scholar 

  25. Tamaševičius, A., Tamaševičiūtė, E., Mykolaitis, G., Bumelienė, S.: Switching from stable to unknown unstable steady states of dynamical systems. Phys. Rev. E 78, 026205 (2008)

    Article  Google Scholar 

  26. Tamaševičius, A., Tamaševičiūtė, E., Mykolaitis, G., Bumelienė, S., Kirvaitis, R.: Stabilization of saddle steady states of conservative and weakly damped dissipative dynamical systems. Phys. Rev. E 82, 026205 (2010)

    Article  Google Scholar 

  27. Tamaševičius, A., Tamaševičiūtė, E., Mykolaitis, G., Bumelienė, S.: Enhanced control of saddle steady states of dynamical systems. Phys. Rev. E 88, 032904 (2013)

    Article  Google Scholar 

  28. Tamaševičiūtė, E., Mykolaitis, G., Bumelienė, S., Tamaševičius, A.: Stabilizing saddles. Phys. Rev. E 88, 060901(R) (2013)

    Article  Google Scholar 

  29. Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley, New York (1987)

    MATH  Google Scholar 

  30. Ott, E.: Chaos in Dynamical Systems. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

  31. Lai, Y-Ch., Kandangath, A., Krishnamoorthy, S., Gaudet, J.A., de Moura, A.P.S.: Inducing chaos by resonant perturbations: theory and experiments. Phys. Rev. Lett. 94, 214101 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Adomaitienė.

Additional information

This work was partly funded by a Grant No. MIP-064/2013 from the Research Council of Lithuania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adomaitienė, E., Mykolaitis, G., Bumelienė, S. et al. Adaptive nonlinear controller for stabilizing saddle-type steady states of dynamical systems. Nonlinear Dyn 82, 1743–1753 (2015). https://doi.org/10.1007/s11071-015-2273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2273-0

Keywords

Navigation