Nonlinear Dynamics

, Volume 82, Issue 4, pp 1611–1622 | Cite as

Stability analysis of reduced rotor pedestal looseness fault model

  • Kuan Lu
  • Yulin Jin
  • Yushu Chen
  • Qingjie Cao
  • Zhiyong Zhang
Original Paper


In this paper, the nonlinear dynamic characteristics of a rotor system supported by ball bearings with pedestal looseness are analyzed. The model of seven-degrees of freedom (DOFs) rotor system is established by the Newton’s second law, which comprises a pair of ball bearings with pedestal looseness at one end. Energy analysis of the original model states that the first two-order proper orthogonal modes occupy almost all the energy of the system, and it demonstrates that the reduced model reserves main dynamical topological characteristics of the original one. A modified proper orthogonal decomposition method is applied in order to reduce the DOFs from seven to two, and the reduced system preserves the bifurcation and amplitude–frequency characteristics of the original one. The harmonic balance method with the alternating frequency–time domain technique is used to calculate the periodic response of the reduced system. Moreover, stability of the two-DOFs model is analyzed based on the known harmonic solution by the Floquet theory.


Modified POD method Energy Stability Harmonic balance method 



We are very grateful for the editors and the valuable suggestions of the reviewers. The authors would also like to acknowledge the financial supports from the National Basic Research Program (973 Program) of China (Grant No. 2015CB057405) and the Natural Science Foundation of China (Grant No. 11372082).


  1. 1.
    Ji, Z., Zu, J.W.: Method of multiple scales for vibration analysis of rotor-shaft systems with nonlinear bearing pedestal model. J. Sound Vib. 218(2), 293–305 (1998)CrossRefGoogle Scholar
  2. 2.
    An, X.L., Jiang, D.Q., Li, S.H., Zhao, M.H.: Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine. Energy 36(9), 5508–5520 (2011)CrossRefGoogle Scholar
  3. 3.
    Chu, F.L., Tang, Y.: Stability and nonlinear responses of a rotor-bearing system with pedestal looseness. J. Sound Vib. 241(5), 879–893 (2001)CrossRefGoogle Scholar
  4. 4.
    Muszynska, A., Goldman, P.: Chaotic responses of unbalanced rotor/bearing/stator systems with looseness or rubs. Chaos Solitons Fractals 5(9), 1683–1704 (1995)CrossRefGoogle Scholar
  5. 5.
    Ren, Z.H., Yu, T., Ma, H., Wen, B.C.: Pedestal looseness fault analysis of overhanging dual-disc rotor-bearing. 12th IFToMM World Congress. Besancon, France (2007)Google Scholar
  6. 6.
    Goldman, P., Muszynska, A.: Analytical and experimental simulation of loose pedestal dynamic effects on a rotating machine vibrational response. Rotating Mach. Veh. Dyn. ASME 35, 11–17 (1991)Google Scholar
  7. 7.
    Ma, H., Zhao, X.Y., Teng, Y.N.: Analysis of dynamic characteristics for a rotor system with pedestal looseness. Shock Vib. 18(1–2), 13–27 (2011)CrossRefGoogle Scholar
  8. 8.
    Renato, B., Michele, R., Riccardo, R.: On the stability of periodic motions of an unbalanced rigid rotor on lubricated journal bearings. Nonlinear Dyn. 10, 175–185 (1996)CrossRefGoogle Scholar
  9. 9.
    Chu, F.L., Zhang, Z.S.: Bifurcation and Chaos in rub-impact Jeffcott rotor system. J. Sound Vib. 210(1), 1–18 (1998)CrossRefGoogle Scholar
  10. 10.
    Choy, F.K., Padovan, J., Qian, W.: Effects of foundation excitation on multiple rub interactions in turbo-machinery. J. Sound Vib. 164(2), 349–363 (1993)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.M., Wen, B.C., Liu, Q.L.: Reliability sensitivity for rotor-stator systems with rubbing. J. Sound Vib. 259(2), 1095–1107 (2003)CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Xu, X.F.: Modeling of nonlinear oil-film acting on a journal with unsteady motion and nonlinear instability analysis under the model. Int. J. Nonlin. Sci. 1(3), 179–186 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    Choi, S.K., Noah, S.T.: Response and stability analysis of piecewise-linear oscillators under multi-forcing frequencies. Nonlinear Dyn. 3, 105–121 (1992)CrossRefGoogle Scholar
  14. 14.
    Kim, Y.B., Noah, S.T.: Stability and bifurcation analysis of oscillators with piecewise-linear characteristics: a general approach. J. Appl. Mech-T ASME 58, 545–553 (1991)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu, H., Chen, Y.S., Cao, Q.J.: Bifurcation analysis for nonlinear multi-degree-of-freedom rotor system with liquid-film lubricated bearings. Appl. Math. Mech. Engl. Ed. 34(6), 777–790 (2013)CrossRefGoogle Scholar
  16. 16.
    Lu, K., Yu, H., Chen, Y.S., Cao, Q.J., Hou, L.: A modified nonlinear POD method for order reduction based on transient time series. Nonlinear Dyn. 79(2), 1195–1206 (2015)CrossRefGoogle Scholar
  17. 17.
    Lu, K., Yu, H., Chen, Y.S., Hou, L., Li, Z.G.: Physical interpretation of the nonlinear POD method based on transient time series. J. Vib. Acoust-Trans. ASME (Under review)Google Scholar
  18. 18.
    Mokhasi, P., Rempfer, D.: Sequential estimation of velocity fields using episodic proper orthogonal decomposition. Phys. D 237, 3197–3213 (2008)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Terragni, F., Vega, J.M.: On the use of POD-based ROMs to analyze bifurcations in some dissipative systems. Phys. D 241, 1393–1405 (2012)MATHCrossRefGoogle Scholar
  20. 20.
    Rowley, C.W., Colonins, T., Murray, R.M.: Model reduction for compressible flows using POD and Galerkin projection. Phys. D 189, 115–129 (2004)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Feeny, B.F., Kappagantu, R.: On the physical interpretation of proper orthogonal modes in vibration. J. Sound Vib. 211, 607–616 (1998)CrossRefGoogle Scholar
  22. 22.
    Ravindra, B.: Comments on “On the physical interpretation of proper orthogonal modes in vibration”. J. Sound Vib. 219, 189–192 (1999)Google Scholar
  23. 23.
    Kappagantu, R., Feeny, B.F.: Interpreting proper orthogonal modes of randomly excited vibration systems. J. Sound Vib. 265, 953–966 (2003)CrossRefGoogle Scholar
  24. 24.
    Kappagantu, R., Feeny, B.F.: Part 2: proper orthogonal modal modeling of a frictionally excited beam. Nonlinear Dyn. 23, 1–11 (2000)MATHCrossRefGoogle Scholar
  25. 25.
    Kerschen, G., Golinval, J.C.: Physical interpretation of the proper orthogonal modes using the singular value decomposition. J. Sound Vib. 249(5), 849–865 (2002)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Shaw, S.W., Pierre, C.: Normal modes for nonlinear vibratory systems. J. Sound Vib. 164, 85–124 (1993)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview. Nonlinear Dyn. 41, 147–169 (2005)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Villa, C., Sinou, J.J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13, 804–821 (2008)CrossRefGoogle Scholar
  29. 29.
    Chen, Y.S.: Nonlinear Vibrations (in Chinese). Higher Education Press, Beijing (2002)Google Scholar
  30. 30.
    Zhang, Z.Y., Chen, Y.S.: HB-AFT method for a kind of strong nonlinear dynamical system with fractional exponential nonlinearity. Appl. Math. Mech. Engl. 35(4), 423–436 (2014)CrossRefGoogle Scholar
  31. 31.
    Shen, J.H., Lin, K.C., Chen, S.H., et al.: Bifurcation and route-to-chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52, 403–414 (2008)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kuan Lu
    • 1
  • Yulin Jin
    • 1
  • Yushu Chen
    • 1
  • Qingjie Cao
    • 1
  • Zhiyong Zhang
    • 1
  1. 1.School of AstronauticsHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations