Nonlinear Dynamics

, Volume 82, Issue 3, pp 1523–1535 | Cite as

Real-time image encryption using a low-complexity discrete 3D dual chaotic cipher

  • Mohamed F. Haroun
  • T. Aaron Gulliver
Original Paper


In this paper, an algorithm is proposed for real-time image encryption. This scheme employs a dual chaotic generator based on a three-dimensional discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the image data are injected into the dynamics of a master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the image data can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the encrypted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the image data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.


Discrete Lorenz system Image encryption Non-autonomous modulation Field programmable gate array (FPGA) 


  1. 1.
    Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16, 2129–2151 (2006)MATHCrossRefGoogle Scholar
  2. 2.
    Carroll, T., Pecora, L.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. I 38, 453–456 (1991)Google Scholar
  3. 3.
    Masuda, N., Aihara, K.: Dynamical characteristics of discretized chaotic permutations. Int. J. Bifurcat. Chaos 12, 2087–2103 (2002)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurcat. Chaos 15, 119–151 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Socek, D., Li, S., Magliveras, S., Furht, B.: Enhanced 1-D chaotic key-based algorithm for image encryption. In: Proceedings of the International Conference Security and Privacy for Emerging Areas in Communication Networks, pp. 406–407 (2005)Google Scholar
  6. 6.
    Gao, H., Zhang, Y., Liang, S., Li, D.: A new chaotic algorithm for image encryption. Chaos Solitons Fractals 29, 393–399 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Pareek, N., Patidar, V., Sud, K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)CrossRefGoogle Scholar
  8. 8.
    Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27, 1371–1381 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.: Cryptanalysis of a chaotic block cipher with external key and its improved version. Chaos Solitons Fractals 37, 299–307 (2008)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V.: On the security of a new image encryption scheme based on chaotic map lattices. Chaos Interdiscip. J. Nonlinear Sci. 18, 033112 (2008)CrossRefGoogle Scholar
  11. 11.
    Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communications. Phys. Rev. Lett. 74, 5028–5031 (1995)CrossRefGoogle Scholar
  12. 12.
    Sobhy, M., Shehata, A.: Secure computer communication using chaotic algorithms. Int. J. Bifurcat. Chaos 10, 2831–2839 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    Lorenz, E., Edward, N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  14. 14.
    Cartwright, J., Piro, O.: The dynamics of Runge–Kutta methods. Int. J. Bifurcat. Chaos 2, 427–449 (1992)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Butcher, J.: A history of Runge–Kutta methods. Appl. Numer. Math. 20, 247–260 (1996)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Zeng, X., Eykholt, R., Pielke, R.: Estimating the Lyapunov exponent spectrum from short time series of low precision. Phys. Rev. Lett. 66, 3229–3232 (1991)CrossRefGoogle Scholar
  17. 17.
    Christiansen, F., Rugh, H.: Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization. Nonlinearity 10, 1063 (1997)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Brown, R., Bryant, P.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43, 2787–2806 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 40, 634–642 (1993)CrossRefGoogle Scholar
  21. 21.
    Haroun, M.F., Gulliver, T.A.: A new 3D chaotic cipher for encrypting two data streams simultaneously. Nonlinear Dyn. 81, 1053–1066 (2015)Google Scholar
  22. 22.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1996)MATHGoogle Scholar
  23. 23.
    Yang, T., Yang, L., Yang, C.: Cryptanalyzing chaotic secure communications using return maps. Phys. Lett. A 245, 495–510 (1998)CrossRefGoogle Scholar
  24. 24.
    Wu, X., Hu, H., Zhang, B.: Analyzing and improving a chaotic encryption method. Chaos Solitons Fractals 22, 367–373 (2004)MATHCrossRefGoogle Scholar
  25. 25.
    Li, S., Álvarez, G., Chen, G.: Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos Solitons Fractals 25, 109–120 (2005)MATHCrossRefGoogle Scholar
  26. 26.
    Orue, A., Álvarez, G., Pastor, G., Romera, M., Montoya, F., Li, S.: A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. Commun. Nonlinear Sci. Numer. Simul. 15, 3471–3483 (2010)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Orue, A., Fernandez, V., Álvarez, G., Pastor, G., Romera, M., Li, S., Montoya, F.: Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems. Phys. Lett. A 372, 5588–5592 (2008)MATHCrossRefGoogle Scholar
  28. 28.
    Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59, 3320–3327 (2010)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Fouda, J.S., Effa, J., Sabat, S., Ali, M.: A fast chaotic block cipher for image encryption. Commun. Nonlinear Sci. Numer. Simul. 19, 578–588 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhou, Y., Bao, L., Chen, C.L.: A new 1D chaotic system for image encryption. Signal Process. 97, 172–182 (2014)CrossRefGoogle Scholar
  31. 31.
    Abd El-Latif A., Niu, X.: A hybrid chaotic system and cyclic elliptic curve for image encryption. Int. J. Electron. Commun. 67, 136–143 (2013)Google Scholar
  32. 32.
    Patidar, V., Pareek, N., Purohit, G., Sud, K.: A robust and secure chaotic standard map based pseudorandom permutation–substitution scheme for image encryption. Opt. Commun. 284, 4331–4339 (2011)CrossRefGoogle Scholar
  33. 33.
    Sayedzadeh, S., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two dimensional piecewise chaotic map. Signal Process. 92, 1202–1215 (2012)CrossRefGoogle Scholar
  34. 34.
    Huang, X., Ye, G.: An efficient self-adaptive model for chaotic image encryption algorithm. Commun. Nonlinear Sci. Numer. Simul. 19, 4094–4104 (2014)CrossRefGoogle Scholar
  35. 35.
    Ghebleh, M., Kanso, A., Noura, H.: An image encryption scheme based on irregularly decimated chaotic maps. Signal Process. Image Commun. 29, 618–627 (2014)CrossRefGoogle Scholar
  36. 36.
    Chen, G., Mao, Y., Chui, C.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2004)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17, 2943–2959 (2012)Google Scholar
  38. 38.
    Zhang, L., Hu, X., Liu, Y., Wong, K.: A chaotic image encryption scheme owning temp-value feedback. Commun. Nonlinear Sci. Numer. Simul. 19, 3653–3659 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhang, X., Mao, Y., Zhao, Z.: An efficient chaotic image encryption based on alternate circular S-boxes. Nonlinear Dyn. 78, 359–369 (2014)Google Scholar
  40. 40.
    Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S., Mosavi, M.: A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed. Tools Appl. 71, 1469–1497 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of VictoriaVictoriaCanada

Personalised recommendations