Advertisement

Nonlinear Dynamics

, Volume 82, Issue 3, pp 1109–1126 | Cite as

Neural adaptive control for uncertain MIMO systems with constrained input via intercepted adaptation and single learning parameter approach

  • Shigen Gao
  • Hairong Dong
  • Bin Ning
  • Xubin Sun
Original Paper

Abstract

This paper focuses on the problem of semi-globally stable neural adaptive control for a class of uncertain multi-input/multi-output nonlinear systems in the presence of strong interconnection, input saturation, and external disturbance. Radial basis function neural networks are utilized in the online learning of uncertain dynamics. The features of the scheme developed can be briefly summarized as follows: (1) The problem of “explosion of complexity” caused by the repeated differentiations of virtual controllers in traditional backstepping design is circumvented via the pioneering dynamic surface control technique; (2) the subsystem in the whole system can be any order, and only one scalar is needed to be online updated when dealing with uncertain dynamics and external disturbance, which is computationally inexpensive from the perspective of practical application; and (3) the bounds of transient and ultimate tracking errors are adjusted by the design parameters in an explicit form with input saturation in effect by virtue of the novel intercepted adaptation approach. It is proved via Lyapunov stability theory that all the closed-loop signals are guaranteed semi-globally uniformly ultimately bounded, and simulation results are presented to verify the effectiveness of the proposed method.

Keywords

Neural adaptive control Nonlinear MIMO system Dynamic surface control Intercepted adaptation 

References

  1. 1.
    Chen, B., Liu, K., Liu, X., Shi, P., Lin, C., Zhang, H.: Approximation-based adaptive neural control design for a class of nonlinear systems. IEEE Trans. Cybern. 44(5), 610–619 (2014)CrossRefGoogle Scholar
  2. 2.
    Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst. 179(1), 34–49 (2011)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Tong, S., Li, H.X.: Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(3), 354–360 (2003)CrossRefGoogle Scholar
  4. 4.
    Li, H.X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–34 (2003)CrossRefGoogle Scholar
  5. 5.
    Tong, S.C., He, X.L., Zhang, H.G.: A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 17(5), 1059–1069 (2009)CrossRefGoogle Scholar
  6. 6.
    Jagannathan, S., Lewis, F.L.: Robust backstepping control of a class of nonlinear systems using fuzzy logic. Inf. Sci. 123(3), 223–240 (2000)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Shaocheng, T., Changying, L., Yongming, L.: Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst. 160(19), 2755–2775 (2009)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Yang, Y., Ren, J.: Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans. Fuzzy Syst. 11(6), 783–795 (2003)CrossRefGoogle Scholar
  10. 10.
    Yang, Y., Feng, G., Ren, J.: A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 34(3), 406–420 (2004)CrossRefGoogle Scholar
  11. 11.
    Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Automa. Control 45(10), 1893–1899 (2000)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yang, Y.-S., Wang, X.-F.: Adaptive \(h_\infty \) tracking control for a class of uncertain nonlinear systems using radial-basis-function neural networks. Neurocomputing 70(4), 932–941 (2007)CrossRefGoogle Scholar
  13. 13.
    Li, T.-S., Wang, D., Feng, G., Tong, S.-C.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. B Cybern. 40(3), 915–927 (2010)CrossRefGoogle Scholar
  14. 14.
    Wang, M., Chen, B., Dai, S.-L.: Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems. Fuzzy Sets Syst. 158(24), 2655–2670 (2007)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chen, B., Liu, X., Liu, K., Lin, C.: Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica 45(6), 1554–1560 (2009)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, B., Liu, X., Liu, K., Lin, C.: Fuzzy-approximation-based adaptive control of strict-feedback nonlinear systems with time delays. IEEE Trans. Fuzzy Syst. 18(5), 883–892 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen, B., Liu, X., Liu, K., Lin, C.: Adaptive control for nonlinear MIMO time-delay systems based on fuzzy approximation. Inf. Sci. 222, 576–592 (2013)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)CrossRefGoogle Scholar
  20. 20.
    Zhang, T.-P., Ge, S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44(7), 1895–1903 (2008)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 52(12), 2360–2365 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Monopoli, R.: Adaptive control for systems with hard saturation, in: Decision and Control including the 14th Symposium on Adaptive Processes, 1975 IEEE Conference on, Vol. 14, pp. 841–843. IEEE (1975)Google Scholar
  23. 23.
    Polycarpou, M., Farrell, J., Sharma, M.: On-line approximation control of uncertain nonlinear systems: issues with control input saturation. In: American Control Conference 2003. Proceedings of the 2003, Vol. 1, pp. 543–548. IEEE (2003)Google Scholar
  24. 24.
    Polycarpou, M., Farrell, J., Sharma, M.: Robust on-line approximation control of uncertain: nonlinear systems subject to constraints. In: IEEE International Conference on Engineering of Complex Computer Systems, pp. 66–74 (2004)Google Scholar
  25. 25.
    Farrell, J., Sharma, M., Polycarpou, M.: Backstepping-based flight control with adaptive function approximation. J. Guid. Control. Dyn. 28(6), 1089–1102 (2005)CrossRefGoogle Scholar
  26. 26.
    Johnson, E.N., Calise, A.J.: Limited authority adaptive flight control for reusable launch vehicles. J. Guid. Control. Dyn. 26(6), 906–913 (2003)CrossRefGoogle Scholar
  27. 27.
    Lin, D., Wang, X., Yao, Y.: Fuzzy neural adaptive tracking control of unknown chaotic systems with input saturation. Nonlinear Dyn. 67(4), 2889–2897 (2012)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Cao, Y.-Y., Lin, Z.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)CrossRefGoogle Scholar
  29. 29.
    Zhong, Y.-S.: Globally stable adaptive system design for minimum phase SISO plants with input saturation. Automatica 41(9), 1539–1547 (2005)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Chen, M., Ge, S.S., How, B.Voon Ee: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)CrossRefGoogle Scholar
  31. 31.
    Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tong, S., Li, Y.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone input. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)CrossRefGoogle Scholar
  33. 33.
    Li, Y., Tong, S., Li, T.: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst. 248, 138–155 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tong, S., Sui, S.S., Li, Y.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. (2015). doi: 10.1109/TFUZZ.2014.2327987
  35. 35.
    Wang, H., Chen, B., Liu, X., Liu, K., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)CrossRefGoogle Scholar
  36. 36.
    Wang, H., Chen, B., Liu, X., Liu, K., Lin, C.: Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation. Inf. Sci. 269, 300–315 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wang, H. S., et al.: Modified model reference adaptive control with saturated inputs, decision and control, 1992, Proceedings of the 31st IEEE Conference on (1992)Google Scholar
  38. 38.
    Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans. Autom. Control 47(8), 1249–1266 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ge, S.S., Wang, C.: Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)CrossRefGoogle Scholar
  40. 40.
    Chen, Z., Ge, S.S., Zhang, Y., Li, Y.: Adaptive neural control of MIMO nonlinear systems with a block-triangular pure-feedback control structure. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2017–2029 (2014)Google Scholar
  41. 41.
    Tong, S., Li, Y., Shi, P.: Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 20(4), 771–785 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Rail Traffic Control and SafetyBeijing Jiaotong UniversityBeijingChina
  2. 2.School of Electronic and Information EngineeringBeijing Jiaotong UniversityBeijingChina

Personalised recommendations