Skip to main content
Log in

Subharmonic Melnikov method of four-dimensional non-autonomous systems and application to a rectangular thin plate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The existence and bifurcations of the subharmonic orbits for four-dimensional non-autonomous nonlinear systems are investigated in this paper. The improved subharmonic Melnikov method is presented by using the periodic transformations and Poincaré map. The theoretical results and the formulas are obtained, which can be used to analyze the subharmonic dynamic responses of four-dimensional non-autonomous nonlinear systems. The improved subharmonic Melnikov method is used to investigate the subharmonic orbits of a simply supported rectangular thin plate under combined parametric and external excitations for verifying the validity and applicability of the method. The theoretical results indicate that the subharmonic orbits can occur in the rectangular thin plate with 1:1 and 1:2 internal resonances. The results of numerical simulation also indicate the existence of the subharmonic orbits for the rectangular thin plate, which can verify the analytical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Melnikov, V.K.: On the stability of the center for time periodic perturbation. Trans. Moscow Math. Soc. 12, 1–56 (1963)

    Google Scholar 

  2. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988)

    Book  MATH  Google Scholar 

  3. Kovacic, G., Wiggins, S.: Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation. Physica D 57, 185–225 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaper, T.J., Kovacic, G.: Multi-bump orbits homoclinic to resonance bands. Trans. Am. Math. Soc. 348, 3835–3887 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camassa, R., Kovacic, G., Tin, S.K.: A Melnikov method for homoclinic orbits with many pulse. Arch. Ration. Mech. Anal. 143, 105–193 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, W., Yao, M.H., Zhang, J.H.: Using extended Melnikov method to study multi-pulse global bifurcations and chaos of a cantilever beam. J. Sound Vib. 319, 541–569 (2009)

    Article  Google Scholar 

  7. Awrejcewicz, J., Holicke, M.: Smooth and non-smooth high dimensional chaos and the Melnikov-type methods. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  8. Awrejcewicz, J., Sendkowski, D.: Stick-slip chaos detection in coupled oscillators with friction. Int. J. Solids Struct. 42, 5669–5682 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenspan, B.D., Holmes, P.J.: Homoclinic orbits, subharmonics and global bifurcations in forced oscillations. In: Barenblatt, G., Iooss, G., Joseph, D.D. (eds.) Nonlinear Dynamics and Turbulence. Pitman, London, pp. 172–214 (1983)

  10. Wiggins, S., Holmes, P.: Periodic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18, 592–611 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yagasaki, K.: The Melnikov theory for subharmonics and their bifurcations in forced oscillations. SIAM J. Appl. Math. 56, 1720–1765 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yagasaki, K.: Periodic and homoclinic motions in forced, coupled oscillators. Nonlinear Dyn. 20, 319–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yagasaki, K.: Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete Contin. Dyn. Syst. 33, 2189–2209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Granados, A., Hogan, S.J., Seara, T.M.: The Melnikov method and subharmonic orbits in a piecewise-smooth system. Siam J. Appl. Dyn. Syst. 11, 801–830 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J.B., Huang, Q.M.: Bifurcations of limit cycles forming compound eyes in the cubic system. Chin. Ann. Math. Ser. B 8, 391–403 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Li, J., Zhang, W., Miao, S.F., Sun, M., Tian, Y.: Bifurcation set and number of limit cycles in \(\text{ Z }_{2}\)-equivariant planar vector fields of degree 5. Appl. Math. Comput. 218, 4944–4952 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J., Tian, Y., Zhang, W., Miao, S.F.: Bifurcation of multiple limit cycles for a rotor-active magnetic bearings system with time-varying stiffness. Int. J. Bifurc. Chaos 18, 755–778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chicone, C.: Lyapunov–Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators. J. Differ. Equ. 112, 407–447 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X.L., Han, M.A.: Bifurcation of periodic solutions and invariant tori for a four-dimensional system. Nonlinear Dyn. 57, 75–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bonnin, M.: Harmonic balance. Melnikov method and nonlinear oscillators under resonant perturbation. Int. J. Circuit Theory Appl. 36, 247–274 (2008)

    Article  MATH  Google Scholar 

  21. Gentile, G., Bartuccelli, M.V., Deane, J.H.B.: Bifurcation curves of subharmonic solutions and Melnikov theory under degeneracies. Rev. Math. Phys. 19, 307–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nosier, A., Reddy, J.N.: A study of non-linear dynamic equations of higher-order shear deformation plate theories. Int. J. Non Linear Mech. 26, 233–249 (1991)

    Article  MATH  Google Scholar 

  23. Shadnam, M.R., Rofooei, F.R., Mofid, M., Mehri, B.: Periodicity in the response of nonlinear plate, under moving mass. Thin Walled Struct. 40, 283–295 (2002)

    Article  Google Scholar 

  24. Awrejcewicz, J., Krysko, V.A., Narkaitis, G.G.: Bifurcations of a thin plate-strip excited transversally and axially. Nonlinear Dyn. 32, 187–209 (2003)

  25. Zhang, W., Chen, J.E., Cao, D.X., Chen, L.H.: Nonlinear dynamic responses of a truss core sandwich plate. Compos. Struct. 108, 367–386 (2014)

  26. Amabili, M., Karazis, K., Khorshidi, K.: Nonlinear vibrations of rectangular laminated composite plates with different boundary conditions. Int. J. Struct. Stab. Dyn. 11, 673–695 (2011)

  27. Zhang, W., Yao, Z.G.: Bifurcations and chaos of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Sci. China Ser. E: Technol. Sci. 52, 731–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, J.E., Zhang, W., Guo, X.Y., Sun, M.: Theoretical and experimental studies on nonlinear oscillations of symmetric cross-ply composite laminated plates. Nonlinear Dyn. 73, 1697–1714 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yao, M.H., Zhang, W.: Multi-pulse chaotic motions of high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate. Meccanica 49, 365–392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Awrejcewicz, J., Kurpa, L., Mazur, O.: On the parametric vibrations and meshless discretization of orthotropic plates with complex shapes. Int. J. Nonlinear Sci. Numer. Simul. 11, 371–386 (2010)

    Article  MathSciNet  Google Scholar 

  31. Sayed, M., Mousa, A.A.: Second-order approximation of angle-ply composite laminated thin plate under combined excitations. Commun. Nonlinear Sci. Numer. Simul. 17, 5201–5216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 11402165 and 11402170). The authors would like to thank the referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Zhang, W., Chen, J.E. et al. Subharmonic Melnikov method of four-dimensional non-autonomous systems and application to a rectangular thin plate. Nonlinear Dyn 82, 643–662 (2015). https://doi.org/10.1007/s11071-015-2184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2184-0

Keywords

Navigation