Nonlinear Dynamics

, Volume 82, Issue 1–2, pp 563–575 | Cite as

New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems

Original Paper


In this paper, a general class of Halanay-type non-autonomous functional differential inequalities is considered. A new concept of stability, namely global generalized exponential stability, is proposed. We first prove some new generalizations of the Halanay inequality. We then derive explicit criteria for global generalized exponential stability of nonlinear non-autonomous time-delay systems based on our new generalized Halanay inequalities. Numerical examples and simulations are provided to illustrate the effectiveness of the obtained results.


Generalized Halanay inequalities Exponential stability Non-autonomous systems Functional differential equations Time-varying delays 

Mathematics Subject Classification

34K20 49J30 93D15 



The authors would like to thank the Editor-in-Chief, Associate Editor(s) and Anonymous Reviewers for their valuable and encouraging comments and helpful suggestions to improve the present paper. This work was partially supported by the ARC Discovery (Grant DP130101532) and the NAFOSTED of Vietnam (Grant 101.01-2014.35).


  1. 1.
    Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)MATHGoogle Scholar
  3. 3.
    Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Gil’, M.I.: Stability of Vector Differential Delay Equations. Springer, Basel (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Trinh, H., Fernando, T.: Functional Observers for Dynamical Systems. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  6. 6.
    Yan, X.G., Spurgeon, S.K., Edwards, C.: Decentralised stabilisation for nonlinear time delay interconnected systems using static output feedback. Automatica 49(2), 633–641 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Adimy, M., Crauste, F., Abdllaoui, AEl: Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics. C. R. Mathematique 348(7), 373–377 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Colijn, C., Mackey, M.C.: Bifurcation and bistability in a model of hematopoietic regulation. SIAM J. Appl. Dyn. Syst. 6(2), 378–394 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Yuan, Y., Zhao, X.Q.: Global stability for non-monotone delay equations (with application to a model of blood cell production). J. Differ. Equ. 252(3), 2189–2209 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Liz, E., Röst, G.: Global dynamics in a commodity market model. J. Math. Anal. Appl. 398(2), 707–714 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hien, L.V.: Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson’s blowflies model with delays. J. Biol. Dyn. 8(1), 135–144 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liu, B., Lu, W., Chen, T.: Generalized Halanay inequalities and their applications to neural networks with unbounded time-varying delays. IEEE Trans. Neural Netw. 22(9), 1508–1513 (2011)CrossRefGoogle Scholar
  13. 13.
    Liu, B., Lu, W., Chen, T.: Stability analysis of some delay differential inequalities with small delays and its applications. Neural Netw. 33, 1–6 (2012)CrossRefGoogle Scholar
  14. 14.
    Hien, L.V., Phat, V.N.: Exponential stability and stabilization of a class of uncertain linear time-delay systems. J. Franklin Inst. 346(6), 611–625 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kharitonov, V.L.: Time-Delay Systems: Lyapunov Functionals and Matrices. Birkhäuser, Berlin (2013)CrossRefGoogle Scholar
  16. 16.
    Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: New augmented Lyapunov–Krasovskii functional approach to stability analysis of neural networks with time-varying delays. Nonlinear Dyn. 76(1), 221–236 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Phat, V.N., Hien, L.V.: An application of Razumikhin theorem to exponential stability for linear nonautonomous systems with time-varying delay. Appl. Math. Lett. 22(9), 1412–417 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Trinh, H., Aldeen, M.: On robustness and stabilization of linear systems with delayed nonlinear perturbations. IEEE Trans. Auto. Control 42(7), 1005–1007 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: Application to time-delay systems. Automatica 49(9), 2860–2866 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ngoc, P.H.A.: Novel criteria for exponential stability of functional differential equations. Proc. Am. Math. Soc. 141(9), 3083–3091 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ngoc, P.H.A.: Stability of positive differential systems with delay. IEEE Trans. Autom. Control 58(1), 203–209 (2013)CrossRefGoogle Scholar
  22. 22.
    Wen, L., Yu, Y., Wang, W.: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347(1), 169–178 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wang, L., Ding, X.: Dissipativity of \(\theta \)-methods for a class of nonlinear neutral delay integro-differential equations. Int. J. Comput. Math. 89(15), 2029–2046 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Chen, T., Wang, L.: Power-rate global stability of dynamical systems with unbounded time-varying delays. IEEE Trans. Circuits Syst. II 54(8), 705–709 (2007)CrossRefGoogle Scholar
  25. 25.
    Berezansky, L., Diblík, J., Svoboda, Z., Šmarda, Z.: Simple uniform exponential stability conditions for a system of linear delay differential equations. Appl. Math. Comput. 250, 605–614 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhou, L.: Dissipativity of a class of cellular neural networks with proportional delays. Nonlinear Dyn. 73(3), 1895–1903 (2013)CrossRefMATHGoogle Scholar
  27. 27.
    Zhou, L.: Global asymptotic stability of cellular neural networks with proportional delays. Nonlinear Dyn. 77(1), 41–47 (2014)CrossRefGoogle Scholar
  28. 28.
    Hien, L.V., Son, D.T.: Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays. Appl. Math. Comput. 251, 14–23 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  30. 30.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls. Springer, London (2010)CrossRefMATHGoogle Scholar
  31. 31.
    Wang, Z., Yang, D., Ma, T., Sun, N.: Stability analysis for nonlinear fractional-order systems based on comparison principle. Nonlinear Dyn. 75(2), 387–402 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of MathematicsHanoi National University of EducationHanoiVietnam
  2. 2.Institute of MathematicsVASTHanoiVietnam
  3. 3.School of EngineeringDeakin UniversityGeelongAustralia

Personalised recommendations