Skip to main content

Advertisement

Log in

Synchronization of fractional-order chaotic systems using unidirectional adaptive full-state linear error feedback coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the stability theory of fractional-order system, a novel unidirectional adaptive full-state linear error feedback coupling scheme is extended to control and synchronize all of fractional-order differential (FOD) chaotic systems with in-commensurate (and commensurate) orders. The feedback strength is adaptive to an updated law rather than prescribed as a constant. The convergence speed of feedback strength is regulated by a constant. With rigorous linear algebraic theorems and precisely numerical matrix computations, a reasonable interval in which the ultimate final control strength dwells is suggested, and the reliability of synchronization state is guaranteed. It demonstrates that the unidirectional full-state linear feedback coupling scheme can be adopted to control and synchronize FOD chaotic systems directly. Numerical simulations of three representative FOD chaotic systems illustrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boccaletti, S., Kurths, J., Osipovd, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng, T., Xia, G.Q., Wu, Z.M.: Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection. Nonlinear Dyn. 76, 399–407 (2014)

    Article  Google Scholar 

  5. Zhu, Q.X., Cao, J.D.: Adaptive synchronization of chaotic Cohen Crossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mohammad, P.A., Hasan, P.A.: Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs. Nonlinear Dyn. 73, 363–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotic synchronization phenomena. Signal Process 93, 1328–1340 (2013)

    Article  Google Scholar 

  8. Chen, D.Y., Zhang, R.F., Ma, X.Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69, 35–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. 36, 1639–1652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, J.K., Wu, Y., Wang, Y.Y.: Generalized finite-time synchronization between coupled chaotic systems of different orders with unknown parameters. Nonlinear Dyn. 74, 479–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, C.C., Lin, C.L.: Robust adaptive sliding mode control for synchronization of space-clamped FitzHugh-Nagumo neurons. Nonlinear Dyn. 69, 2089–2096 (2012)

    Article  MathSciNet  Google Scholar 

  12. Sun, Y.J.: Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16, 3863–3870 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baziliauskas, A., Krivickas, R., Tamasevicius, A.: Coupled chaotic Colpitts oscillator: identical and mismatched cases. Nonlinear Dyn. 44, 151–158 (2006)

    Article  MATH  Google Scholar 

  14. Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  15. Agrawal, S.K., Das, S.: A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dyn. 73, 907–919 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Z., Huang, X., Zhao, Z.: Synchronization of nonidentical chaotic fractional-order systems with different orders of fractional derivatives. Nonlinear Dyn. 69, 999–1007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caponetto, R., Dongola, G., Fortuna, L., Petrás̆, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Publishing, Singapore (2010)

    Google Scholar 

  18. Muthukumar, P., Balasubramaniam, P.: Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dyn. 74, 1169–1181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos 24, 033105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Y., Wang, H., Li, Y.G., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19, 3735–3744 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yu, H.J., Liu, Y.Z.: Chaotic synchronization based on stability criterion of linear systems. Phys. Lett. A 314, 292–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, X.F., Chen, G.R., Cai, J.P.: Chaos synchronization of the master–slave generalized Lorenz systems via linear state error feedback control. Phys. D 229, 52–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, G.P., Tang, K.S., Chen, G.R.: A simple global synchronization criterion for coupled chaotic systems. Chaos Solitons Fractals 15, 925–935 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, G.P., Tang, K.S.: A simple global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. Int. J. Bifurc. Chaos 12, 2239–2263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.D., Liao, X.F.: Anti-synchronization of a class of coupled chaotic systems via linear feedback control. Int. J. Bifurc. Chaos 16, 2041–2047 (2006)

    MathSciNet  Google Scholar 

  26. Lü, J.H., Zhou, T.S., Zhang, S.C.: Chaos synchronization between linearly coupled chaotic systems. Chaos Solitons Fractals 14, 529–541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, F., Ren, Y., Shan, X.M., Qiu, Z.L.: A linear feedback synchronization theorem for a class of chaotic systems. Chaos Solitons Fractals 13, 723–730 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan, Z.Y., Yu, P.: Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems. Chaos Solitons Fractals 33, 419–435 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hadhrami, S.A., Saaban, A.B., Ibrahim, A.B., Shahzad, M., Ahmad, I.: Linear active control algorithm to synchronize a nonlinear HIV/AIDS dynamical system. Asian J. Appl. Sci. Eng. 3, 96–113 (2014)

    Google Scholar 

  31. Saaban, A.B., Ibrahim, A.B., Shahzad, M., Ahmad, I.: Identical synchronization of a new chaotic system via nonlinear control and linear active control techniques: a comparative analysis. Int. J. Hybrid Inf. Technol. 7, 211–224 (2014)

    Article  Google Scholar 

  32. Zhang, F.R., Chen, G.R., Li, C.P., Kurths, J.: Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A 371, 20120155 (2013)

    Article  MathSciNet  Google Scholar 

  33. Gammoudi, I.E., Feki, M.: Synchronization of integer order and fractional order Chua’s systems using robust observer. Commun. Nonlinear Sci. Numer. Simul. 18, 625–638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, D.Y., Zhang, R.F., Sprott, J.C., Chen, H.T., Ma, X.Y.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. Chaos 22, 023130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, P., Cheng, Y.M., Kuang, F.: Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems). Chin. Phys. B 19, 090503 (2010)

    Article  MathSciNet  Google Scholar 

  36. Xu, F.: Integer and fractional order multiwing chaotic attractors via the Chen system and the Lü system with switching controls. Int. J. Bifurc. Chaos 24, 1450029 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lü system. Phys. A 353, 61–72 (2005)

    Article  Google Scholar 

  38. Wu, X.J., Li, J., Chen, G.R.: Chaos in the fractional order unified system and its synchronization. J. Frankl. Inst. 345, 392–401 (2008)

    Article  MATH  Google Scholar 

  39. Liu, C.X., Liu, L., Liu, T.: A novel three-dimensional autonomous chaos system. Chaos Solitons Fractals 39, 1950–1958 (2009)

    Article  MATH  Google Scholar 

  40. Liu, C.X., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Daftardar-Gejji, V., Bhalekar, S.: Chaos in fractional ordered Liu system. Comput. Math. Appl. 59, 1117–1127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, X.Y., Wang, M.J.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos 17, 033106 (2007)

    Article  MATH  Google Scholar 

  43. Li, X.F., Chu, Y.D., Zhang, J.G., Chang, Y.X.: Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor. Chaos Solitons Fractals 41, 2360–2370 (2009)

    Article  MATH  Google Scholar 

  44. Nyamoradi, N., Javidi, M.: Sliding mode control of uncertain unified chaotic fractional-order new Lorenz-like system. Dyn. Cont. Disc. Impul. Syst. 20, 63–82 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, R.X., Yang, S.P.: Adaptive synchronization of fractional-order chaotic systems. Chin. Phys. B 19, 020510 (2010)

    Article  Google Scholar 

  46. Restrepo, J.G., Ott, E., Hunt, B.R.: Spatial patterns of desynchronization bursts in networks. Phys. Rev. E 69, 066215 (2004)

    Article  MathSciNet  Google Scholar 

  47. Yanchuka, S., Maistrenkoa, Y., Mosekilde, E.: Loss of synchronization in coupled Rössler systems. Phys. D 154, 26–42 (2001)

    Article  MathSciNet  Google Scholar 

  48. Wu, Y., Liu, W.P., Xiao, J.H., Zhan, M.: Chaos desynchronization in strongly coupled systems. Phys. Lett. A 369, 464–468 (2007)

    Article  MATH  Google Scholar 

  49. Acharyya, S., Amritkar, R.E.: Desynchronization bifurcation of coupled nonlinear dynamical systems. Chaos 21, 023113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, F.Q., Liu, C.X.: A new criterion for chaos and hyperchaos synchronization using linear feedback control. Phys. Lett. A 360, 274–278 (2006)

    Article  MATH  Google Scholar 

  51. Huang, D.B.: Synchronization-based estimation of all parameters of chaotic systems from time series. Phys. Rev. E 69, 067201 (2004)

    Article  MathSciNet  Google Scholar 

  52. Huang, D.B.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71, 037203 (2005)

    Article  Google Scholar 

  53. Huang, D.B.: Adaptive-feedback control algorithm. Phys. Rev. E 73, 066204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen, M., Zhou, D.: Synchronization in uncertain complex networks. Chaos 16, 013101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vincent, U.E., Guo, R.W.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375, 2322–2326 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Guo, R.W.: Finite-time stabilization of a class of chaotic systems via adaptive control method. Commun. Nonlinear Sci. Numer. Simul. 17, 255–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, R.H., Chen, W.S., Li, S.: Finite-time stabilization for hyper-chaotic Lorenz system families via adaptive control. Appl. Math. Model. 37, 1966–1972 (2013)

    Article  MathSciNet  Google Scholar 

  58. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1998)

    MATH  Google Scholar 

  59. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  60. Petrás̆, I.: Fractional-Order Nonlinear Systems: Modeling Analysis and Simulation. Higher Education Press, Beijing (2011)

    Book  Google Scholar 

  61. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 237, 2628–2637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Norelys, A.-C., Manuel, A.D.-M., Javier, A.G.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  64. Manuel, A.D.-M., Norelys, A.-C., Javier, A.G., Rafael, C.-L.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hu, J.B., Lu, G.P., Zhang, S.B., Zhao, L.D.: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20, 905–913 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hu, J.B., Zhao, L.D.: Stability theorem and control of fractional systems. Acta Phys. Sin. 62, 240504 (2013)

    Google Scholar 

  67. Slotine, J.-J., Li, W.P.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  68. Zhang, X.D.: Matrix Analysis and Applications. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  69. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Article  Google Scholar 

  70. Odibat, Z.: A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Anal. 13, 779–789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wu, X.J., Shen, S.L.: Chaos in the fractional-order Lorenz system. Int. J. Comput. Math 86, 1274–1282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  Google Scholar 

  74. Razminia, A., Majd, V.J., Baleanu, D.: Chaotic incommensurate fractional order Rössler system: active control and synchronization. Adv. Differ. Equ. 2011, 15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yu, Y.G., Li, H.X., Su, Y.: The synchronization of three chaotic fractional-order Lorenz systems with bidirectional coupling. J. Phys. 96, 012113 (2008)

    Google Scholar 

  76. Saeed, B., Ali, K.S., Mohammad, H.: Stabilization of fractional order systems using a finite number of state feedback laws. Nonlinear Dyn. 66, 141–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  77. Uǧur, E.K., Ylmaz, U.: Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods. Nonlinear Dyn. 75, 63–72 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research was supported by NNSFs of China (Grant Nos. 11161027, 11262009), Key FSN of Gansu Province, China (Grant No. 1104WCGA195), and the Specialized RF for the Doctoral Program of Higher Education of China (Grant No. 20136204110001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. T. Leung.

Appendix: The proof of Theorem 3

Appendix: The proof of Theorem 3

Proof

A symmetric matrix has exactly \(n\) real eigenvalues (counting multiplicities). There is an orthogonal matrix \(Q\), such that

$$\begin{aligned} Q^\mathtt T \left( \frac{A + A^\mathtt T }{2} \right) Q = \bar{\varLambda } = \left( \bar{\lambda }_1, \bar{\lambda }_2, \ldots , \bar{\lambda }_n \right) , \end{aligned}$$

where \(\bar{\varLambda }\) is the spectrum of the symmetric part of \(A\), and \(\bar{\lambda }_i \in {\mathbb {R}}\), \(i = 1, 2, \ldots , n\).

Due to

$$\begin{aligned} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) = {\text{ max }} \left\{ \bar{\lambda }_1, \bar{\lambda }_2, \ldots , \bar{\lambda }_n \right\} , \end{aligned}$$

and

$$\begin{aligned} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) = \underset{x \ne 0}{\text{ max }} \frac{x^\mathtt T \left( \frac{A + A^\mathtt T }{2}\right) x}{x^\mathtt T x}, \end{aligned}$$

one has

$$\begin{aligned} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) \ge \frac{u^\mathtt T \left( \frac{A + A^\mathtt T }{2}\right) u}{u^\mathtt T u}. \end{aligned}$$

Let \(u^\mathtt T = (1, 1, \ldots , 1)\),

$$\begin{aligned} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right)\ge & {} u^\mathtt T \left( \frac{A + A^\mathtt T }{2}\right) u \\= & {} \sum _{ij}^n{\left( \frac{a_{ij} + a_{ji}}{2}\right) }. \end{aligned}$$

On the other hand, according to the Gershgorin’s circle theorem, we have

$$\begin{aligned} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) \le \sum _{i \ne j}^n{\left( \frac{\left| a_{ij} + a_{ji}\right| }{2}\right) + a_{ii}}. \end{aligned}$$

Suppose \(q_i\) is the \(i\)th column of \(Q\),

$$\begin{aligned} \left\| x \right\| _2^2= & {} x^\mathtt T x = x^\mathtt T Q Q^\mathtt T x = \left( Q^\mathtt T x \right) ^\mathtt T \left( Q^\mathtt T x \right) \\= & {} \sum _{i = 1}^n {\left( q_i^\mathtt T x\right) ^2}. \end{aligned}$$

And,

$$\begin{aligned} x^\mathtt T A x&= x^\mathtt T \left( \frac{A + A^\mathtt T }{2} \right) x = x^\mathtt T \left( Q \bar{\varLambda } Q^\mathtt T \right) x\\&= \left( Q^\mathtt T x \right) ^\mathtt T \bar{\varLambda } \left( Q^\mathtt T x \right) \\&= \sum _{i = 1}^n {\bar{\lambda }_i \left( q_i^\mathtt T x\right) ^2} \le \underset{i}{\text{ max }} (\bar{\lambda }_i) \sum _{i = 1}^n {\left( q_i^\mathtt T x\right) ^2}\\&= \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) \left\| x \right\| _2^2. \end{aligned}$$

Next, \(\mathfrak {R}(A) = \xi ^\mathtt H \left( (A + A^\mathtt T )/2 \right) \xi = \xi ^\mathtt H \left( Q \bar{\varLambda } Q^\mathtt T \right) \xi \). Denotes that \(y = Q \xi = (y_1, y_2, \ldots , y_n)^\mathtt T \). Obviously, \(y^\mathtt H y = 1\) and \(\mathfrak {R}(A) = \bar{\lambda }_1 \left| y_1\right| ^2 + \bar{\lambda }_2 \left| y_2\right| ^2 + \cdots + \bar{\lambda }_n \left| y_n\right| ^2\).

Therefore,

$$\begin{aligned} \mathfrak {R}(A)\le & {} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) \left( \left| y_1\right| ^2 + \left| y_2\right| ^2 + \cdots + \left| y_n\right| ^2 \right) \\= & {} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) . \end{aligned}$$

Obviously,

$$\begin{aligned} \mathfrak {R}(A) \le \left\| \frac{A + A^\mathtt T }{2}\right\| _2, \end{aligned}$$

because the spectral radius \(\rho \) of a symmetric matrix satisfies,

$$\begin{aligned} \bar{\lambda }_{\mathrm{max}} \left( \frac{A + A^\mathtt T }{2} \right) \le \rho \left( \frac{A + A^\mathtt T }{2}\right) \le \left\| \frac{A + A^\mathtt T }{2}\right\| _2 . \end{aligned}$$

This is the end of the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, A.Y.T., Li, XF., Chu, YD. et al. Synchronization of fractional-order chaotic systems using unidirectional adaptive full-state linear error feedback coupling. Nonlinear Dyn 82, 185–199 (2015). https://doi.org/10.1007/s11071-015-2148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2148-4

Keywords

Navigation