Advertisement

Nonlinear Dynamics

, Volume 81, Issue 4, pp 1951–1967 | Cite as

Artificial neural network-based modeling of brain response to flicker light

  • Razieh Falahian
  • Maryam Mehdizadeh Dastjerdi
  • Malihe Molaie
  • Sajad Jafari
  • Shahriar Gharibzadeh
Original Paper

Abstract

Not only does the modeling of dynamical systems, for instance the biological systems, play an important role in the accurate perception and analysis of these systems, but it also makes the prediction and control of their behavior straightforward. The results of multiple researches in the field of the modeling of biological systems have indicated that the chaotic behavior is a prevalent feature of most complex interactive biological systems. Our results demonstrate that the artificial neural network provides us an effective means to model the underlying dynamics of these systems. In this paper, at first, we represent the results of the use of a multilayer feed-forward neural network to model some famous chaotic systems. The specified neural network is trained with the return maps extracted from the time series. We proceed with the paper by evaluating the accuracy and robustness of our model. The ability of the select neural network to model the dynamics of chosen chaotic systems is verified, even in the presence of noise. Afterwards, we model the brain response to the flicker light. It is known that the brain response to some stimuli such as the flicker light recorded as electroretinogram is an exemplar of chaotic behavior. The need remains, however, for realistic modeling of this behavior of the brain. In this paper, we represent the results of the modeling of this chaotic response by utilizing the proposed neural network. The capability of the neural network to model this specific brain response is confirmed.

Keywords

Artificial neural network Bifurcation diagram Brain response Chaotic behavior Electroretinogram Modeling 

Notes

Acknowledgments

The authors would like to express their sincere gratitude to Professor Markus Meister in the department of molecular and cellular biology at Harvard University for providing the ERG data.

References

  1. 1.
    Spiegelman, M.: An introduction to dynamical systems and chaos. Lamont-Doherty Earth Observatory (LDEO), Columbia University, Earth Institute (1997)Google Scholar
  2. 2.
    Ball, R., Kolokoltsov, V., MacKay, R.S.: Complexity Science: The Warwick Master’s Course. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  3. 3.
    Korn, H., Faure, P.: Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C. R. Acad. Sci. Ser. III Sci. Vie 324(9), 773–793 (2001)Google Scholar
  4. 4.
    Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003)CrossRefGoogle Scholar
  5. 5.
    Freeman, W.J.: Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographic (EEG) potential. IEEE Trans. Circuits Syst. 35(7), 781–783 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Freeman, W.J.: The physiology of perception. Sci. Am. 264(2), 78–85 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems. Commun. Nonlinear Sci. Numer. Simul. 20, 469–481 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Skarda, C.A., Freeman, W.J.: Chaos and the new science of the brain. Concepts Neurosci. 1(2), 275–285 (1990)Google Scholar
  9. 9.
    Ferreira, B.B., Savi, M.A., Paula, A.S.: Chaos control applied to cardiac rhythms represented by ECG signals. Phys. Scr. 89(10), 1–18 (2014)Google Scholar
  10. 10.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge Nonlinear Science Series, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  11. 11.
    Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006)CrossRefGoogle Scholar
  12. 12.
    Eliasmith, C., Trujillo, O.: The use and abuse of large-scale brain models. Curr. Opin. Neurobiol. 25, 1–6 (2014)CrossRefGoogle Scholar
  13. 13.
    Hubel, D.: Eye, Brain, and Vision. Scientific American Library Series, Book 22 (1995)Google Scholar
  14. 14.
    Drápela, J., Šlezingr, J.: A light-flickermeter—part I: design. In: Proceedings of the 11th International Scientific Conference on Electric Power Engineering, pp. 453–458 (2010)Google Scholar
  15. 15.
    The Society for Neuroscience: Brain facts: a primer on the brain and nervous system. The Society for Neuroscience (2012)Google Scholar
  16. 16.
    Burns, S.A., Elsner, A., Kreitz, M.R.: Analysis of nonlinearities in the flicker ERG. Optom. Vis. Sci. 69(2), 95–105 (1992)CrossRefGoogle Scholar
  17. 17.
    Crevier, D., Meister, M.: Synchronous period-doubling in flicker vision of salamander and man. J. Neurophysiol. 79, 1869–1878 (1998)Google Scholar
  18. 18.
    Molaie, M., Falahian, R., Gharibzadeh, S., Jafari, S., Sprott, J.C.: Artificial neural networks: powerful tools for modeling chaotic behavior in the nervous system. Front. Comput. Neuro-sci. 8 (2014)Google Scholar
  19. 19.
    Gowrisankaran, S., Alexander, K.R.: Stimulus chromatic properties affect period doubling in the human cone flicker ERG. Doc. Ophthalmol. 125(1), 21–29 (2012)CrossRefGoogle Scholar
  20. 20.
    Alexander, K.R., Raghuram, A., McAnany, J.J.: Comparison of spectral measures of period doubling in the cone flicker electro-retinogram. Doc. Ophthalmol. 117(3), 197–203 (2008)CrossRefGoogle Scholar
  21. 21.
    Spiegler, A., Knosche, T.R., Schwab, K., Haueisen, J., Atay, F.M.: Modeling brain resonance phenomena using a neural mass model. PLoS Comput. Biol. 7(12), 1–17 (2011)CrossRefGoogle Scholar
  22. 22.
    Belusic, G.: Electroretinograms. InTech (2011)Google Scholar
  23. 23.
    Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501(1–2), 1–74 (2011)CrossRefGoogle Scholar
  24. 24.
    Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013)CrossRefGoogle Scholar
  25. 25.
    Kalogirou, S.A., Mathioulakis, E., Belessiotis, V.: Artificial neural networks for the performance prediction of large solar systems. Renew. Energy 63, 90–97 (2014)CrossRefGoogle Scholar
  26. 26.
    Kalogirou, S.A.: Applications of artificial neural-networks for energy systems. Appl. Energy 67(1–2), 17–35 (2000)CrossRefGoogle Scholar
  27. 27.
    Kalogirou, S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5(4), 373–401 (2001)CrossRefGoogle Scholar
  28. 28.
    Kalogirou, S.A.: Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29(6), 515–566 (2003)CrossRefGoogle Scholar
  29. 29.
    Sardari, S., Kohanzad, H., Ghavami, G.: Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design. Chemom. Intell. Lab. Syst. 130, 151–158 (2014)CrossRefGoogle Scholar
  30. 30.
    Singh, Y., Chauhan, A.S.: Neural networks in data mining. J. Theor. Appl. Inf. Technol. 5(6), 37–42 (2009)Google Scholar
  31. 31.
    Rosipal, K.N.: Overview and recent advances in partial least squares. Subspace, Latent Structure and Feature Selection (SLSFS), Lecture Notes in Computer Science (LNCS), vol. 3940, pp. 34–51 (2006)Google Scholar
  32. 32.
    Jenkins, J.L., Bender, A., Davies, J.W.: In silico target fishing: predicting biological targets from chemical structure. Drug Discov. Today 3(4), 413–421 (2006)CrossRefGoogle Scholar
  33. 33.
    Wang, S., Chung, F.L., Wang, J., Wu, J.: A fast learning method for feedforward neural networks. Neurocomputing 149(A), 295–307 (2015)CrossRefGoogle Scholar
  34. 34.
    Obcemea, C.: Chaotic Dynamics of Tumor Growth and Regeneration. Unifying Themes in Complex Systems, pp. 349–354. Springer, Berlin (2006)CrossRefGoogle Scholar
  35. 35.
    Kurtser, P., Levi, O., Gontar, V.: Detection and Classification of ECG Chaotic Components Using ANN Trained by Specially Simulated Data. Communications in Computer and Information Science, vol. 311. Springer, Berlin (2012)Google Scholar
  36. 36.
    Wang, C., Cao, H.: Parameter space of the Rulkov chaotic neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2060–2070 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wu, L., Akgunduz, A.: User interface design for artistic expression based on biosignals: an EEG feature extraction method based on weak periodic signal detection. In: Proceedings of IEEE International Conference on Innovative Design and Manufacturing (ICIDM), pp. 5–10 (2014)Google Scholar
  38. 38.
    Betancourt-Mar, J.A., Alarcón-Montelongo, I.S., Nieto-Villar, J.M.: The Rössler system as a model for chronotherapy. J. Phys. Conf. Ser. 23(1), 58–61 (IOP Publishing) (2005)Google Scholar
  39. 39.
    Lainscsek, C., Weyhenmeyer, J., Hernandez, M.E., Poizner, H., Sejnowski, T.J.: Non-linear dynamical classification of short time series of the Rössler system in high noise regimes. Front. Neurol. 4, 1–12 (2013) (Article 182)Google Scholar
  40. 40.
    Ivancevic, T.T., Bottema, M.J., Jain, L.C.: A mathematical model of chaotic attractor in tumor growth and decay. Cornell University Library (2008). arXiv:0810.4580
  41. 41.
    Hald, B.G., Lavagesen, N., Nielsen, C., Mosekilde, E., Larssen, E.R., Engelbrecht, J.: Rössler Bands in Economic and Biological Systems. Computer-Based Management of Complex Systems. Springer, Berlin (1989)Google Scholar
  42. 42.
    Alhawarat, M., Nazih, W., Eldesouki, M.: Studying a chaotic spiking neural model. Int. J. Artif. Intell. Appl. (IJAIA) 4(5), 107–119 (2013) (Cornell University Library arXiv:1310.7115)
  43. 43.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)CrossRefGoogle Scholar
  44. 44.
    Edmonds, A.N.: Time series prediction using supervised learning and tools from chaos theory. Ph.D. Dissertation, University of Luton (1996)Google Scholar
  45. 45.
    Sprott, J.C.: Chaos and Time Series Analysis. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  46. 46.
    Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3(I)), 617–656 (1985)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Pashaie, R., Farhat, N.H.: Self-organization in a parametrically coupled logistic map network: a model for information processing in the visual cortex. IEEE Trans. Neural Netw. 20(4), 597–608 (2009)CrossRefGoogle Scholar
  48. 48.
    Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezland. Wiley, New York (2008)Google Scholar
  49. 49.
    Behera, S.K., Meher, S.K., Park, H.-S.: Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Technol. Environ. Policy 17, 443–453 (2014)CrossRefGoogle Scholar
  50. 50.
    Hernandez-Davila, V.M., Soto-Bernal, T.G., Vega-Carrillo, H.R.: Determination of neutron fluence-to-dose conversion coefficients by means of artificial neural networks. Appl. Radiat. Isot. 83(C), 249–251 (2014)CrossRefGoogle Scholar
  51. 51.
    Sahoo, G.B., Ray, C.: Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 283(1–2), 147–157 (2006)CrossRefGoogle Scholar
  52. 52.
    Shokrian, M., Sadrzadeh, M., Mohammadi, T.: \({\rm C}_{3}{\rm H}_{8}\) separation from \({\rm CH}_{4}\) and \({\rm H}_{2}\) using a synthesized PDMS membrane: Experimental and neural network modeling. J. Membr. Sci. 346(1), 59–70 (2010)CrossRefGoogle Scholar
  53. 53.
    Niemeyer, G.: Making diagnostic use of electrical events in the retina. The Baltic Eye, Newletter for Ophthalmologists. http://www.thebalticeye.com/ZURICH.html
  54. 54.
    Niemeyer, G.: Das Elektroretinogramm: Nützlich und nicht kompliziert. Ophta Schweiz. Fachz. Augenärztl. Med. 5, 7–13 (2004)Google Scholar
  55. 55.
    Karwoski, C.: Origin of Electroretinographic Components. Principles and Practice of Clinical Electrophysiology of Vision (Part III). Mosby Year Book, St. Louis (1991)Google Scholar
  56. 56.
    Shah, M.R., Alexander, K.R., Rips, H., Qian, H.: Characteristics of period doubling in the rat cone flicker ERG. Exp. Eye Res. 90(2), 196–202 (2010)CrossRefGoogle Scholar
  57. 57.
    Nusse, H.E., Yorke, J.A.: Dynamics: Numerical Explorations. Applied Mathematical Sciences, vol. 101. Springer, Berlin (1998)CrossRefGoogle Scholar
  58. 58.
    Orrell, D., Smith, L.A.: Visualising bifurcations in high dimensional systems: the spectral bifurcation diagram. Intl. J. Bifurc. Chaos 13(10), 3015–3027 (2003)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Grant, A.: Applications of graph theory to the analysis of chaotic dynamical systems and complex networks. The Division of Science, Mathematics, and Computing of Bard College, Annandale-on-Hudson, New York (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Razieh Falahian
    • 1
  • Maryam Mehdizadeh Dastjerdi
    • 1
  • Malihe Molaie
    • 1
  • Sajad Jafari
    • 1
  • Shahriar Gharibzadeh
    • 1
  1. 1.Department of Biomedical EngineeringAmirkabir University of Technology (AUT)TehranIran

Personalised recommendations