Skip to main content
Log in

Fractional Lie group method of the time-fractional Boussinesq equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Finding the symmetries of the nonlinear fractional differential equations is a topic which has many applications in various fields of science and engineering. In this manuscript, firstly, we are interested in finding the Lie point symmetries of the time-fractional Boussinesq equation. After that, by using the infinitesimal generators, we determine their corresponding invariant solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012)

  2. Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica. Telos, Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  4. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations, Applied Mathematics and Sciences, vol. 81. Springer, New York (1989)

    Book  Google Scholar 

  5. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 8197 (1998)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Meth. Part Differ. Equ. 26(2), 448–479 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Djordjevic, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/Korteweg–deVries fractional equations. J. Comput. Appl. Math. 212, 701714 (2008)

    MathSciNet  Google Scholar 

  9. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009)

    Article  Google Scholar 

  10. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, SYu.: Continuous transformation groups of fractional differential equations Vestnik. USATU 9, 125135 (2007). [in Russian]

    Google Scholar 

  11. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, SYu.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009)

    Article  Google Scholar 

  12. He, J.H., Wu, G.C., Austin, F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A 1(1), (2010)

  13. He, J.H.: Analytical methods for thermal science-An elementary introduction. Therm. Sci. 15(S1), (2011)

  14. Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vols. 1, 2, 3. CRC Press, Boca Raton (1994, 1995,1996)

  15. Jafari, H., Kadkhoda, N., Tajadodi, H., Hosseini Matikolai, S.A.: Homotopy perturbation Pade technique for solving fractional Riccati differential equations. Int. J. Nonlin. Sci. Numer. Simul. 11, 271–275 (2010)

    MathSciNet  Google Scholar 

  16. Jefferson, G.F., Carminati, J.: FracSym: automated symbolic computation of Lie symmetries of fractional differential equations. Comp. Phys. Commun. 185, 430–441 (2014)

    Article  Google Scholar 

  17. Kasatkin, A.A.: Symmetry properties for systems of two ordinary fractional differential equations. Ufa Math. J. 4, 65–75 (2012)

    Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  19. Liu, C.S.: Counterexamples on Jumarie’s two basic fractional calculus formula. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 9294 (2015)

    Google Scholar 

  20. Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Machado, J.A.T., Galhano, A.: Approximating fractional derivatives in the perspective of system control. Nonlinear Dyn. 56, 401–407 (2009)

    Article  MATH  Google Scholar 

  23. Nadjafikhah, M., Ahangari, F.: Symmetry reduction of two-dimensional damped Kuramoto–Sivashinsky equation. Commun. Theor. Phys. 56, 211–217 (2011)

    Article  MATH  Google Scholar 

  24. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  25. Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107, 2nd edn. Springer, Berlin (1993)

    Book  Google Scholar 

  26. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Academic Pres, New York (1982)

    MATH  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, fractional differential equations, to Methods of Their Solution and some of Their Applications, vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego (1999)

    Google Scholar 

  28. Samko, G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  29. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg–deVries equations. J. Math. Anal. Appl. 393, 341347 (2012)

    Article  MathSciNet  Google Scholar 

  30. Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18, 2945–2948 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. (2013). doi:10.1016/j.cnsns.2012.11.032

  32. Wu, G.C.: A fractional Lie group method for anomalous diffusion equations. Commun. Fract. Calc. 1, 27–31 (2010)

    Google Scholar 

  33. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xing-Jiang, Y., Xi-Qiang, L.: Lie symmetry analysis of the time fractional Boussinesq equation. Acta Phys. Sin. 62(23), 230201 (2013). in Chinese

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Kadkhoda, N. & Baleanu, D. Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn 81, 1569–1574 (2015). https://doi.org/10.1007/s11071-015-2091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2091-4

Keywords

Navigation