Nonlinear Dynamics

, Volume 81, Issue 3, pp 1459–1473 | Cite as

X–Y pedestal: partial quasi-linearization and cascade-based global output feedback tracking control

  • Mehdi Tavan
  • Ali Khaki-Sedigh
  • Mohammad Reza Arvan
  • Ahmad Reza Vali
Original Paper


This paper addresses the problem of output (angular position) feedback tracking control of two-degree-of-freedom X–Y pedestal systems. Both the velocity observer and the controller are based on a partial quasi-linearized model for the X–Y pedestal system. The two-dimensional velocity observer is uniformly globally exponentially convergent and does not require a priori upper-bound knowledge of the velocity magnitude. An important feature of the proposed observer is that it constructs a uniform global stable output feedback tracking controller with any domain of initial tracking errors and initial estimation errors. The proof of the main results is based on the well-established theorems for cascaded nonlinear time-varying systems. Due to uniform asymptotic stability of the observer and the output feedback controller, numerical simulations show their robust performance in the face of bounded additive perturbations on both input and output.


X–Y pedestal Partial quasi-linearization Cascaded systems Velocity observer Output feedback tracking 


  1. 1.
    Kostulski, T.: Ka band propagation experiments on the Australian low earth orbit microsatellite’FedSat’. Ph.D. Thesis, University of Technology Sydney (2008)Google Scholar
  2. 2.
    Rolinski, A., Carlson, D., Coates, R.: The XY antenna mount for data acquisition from satellites. IRE Trans. Space Electron. Telem. SET-8(2), 159–163 (1962). doi: 10.1109/IRET-SET.1962.5008825
  3. 3.
    Taheri, A., Shoorehdeli, M.A., Bahrami, H., Fatehi, M.H.: Implementation and control of X-Y pedestal using dual-drive technique and feedback error learning for LEO satellite tracking. IEEE Trans. Control Syst. Technol. 22(4), 1646–1657 (2014)CrossRefGoogle Scholar
  4. 4.
    Ghahramani, A., Karbasi, T., Nasirian, M., Sedigh, A.: Predictive control of earth station antenna (XY pedestal). In: 2nd International Conference on Control, Instrumentation and Automation (ICCIA), pp. 344–349 (2011)Google Scholar
  5. 5.
    Namvar, M.: A class of globally convergent velocity observers for robotic manipulators. IEEE Trans. Autom. Control 54(8), 1956–1961 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Su, Y., Müller, P.C., Zheng, C.: A simple nonlinear observer for a class of uncertain mechanical systems. IEEE Trans. Autom. Control 52(7), 1340–1345 (2007)CrossRefGoogle Scholar
  8. 8.
    Su, Y.: A simple global asymptotic convergent observer for uncertain mechanical systems. Int. J. Syst. Sci. 1–10 (2014). doi: 10.1080/00207721.2014.907942
  9. 9.
    Loría, A., Melhem, K.: Position feedback global tracking control of EL systems: a state transformation approach. IEEE Trans. Autom. Control 47(5), 841–847 (2002)CrossRefGoogle Scholar
  10. 10.
    Melhem, K., Wang, W.: Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 25(2), 428–437 (2009)CrossRefGoogle Scholar
  11. 11.
    Lotfi, N., Namvar, M.: Global adaptive estimation of joint velocities in robotic manipulators. IET Control Theory Appl. 4(12), 2672–2681 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Venkatraman, A., Ortega, R., Sarras, I., van der Schaft, A.: Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Trans. Autom. Control 55(5), 1059–1074 (2010)CrossRefGoogle Scholar
  13. 13.
    Astolfi, A., Ortega, R., Venkatraman, A.: A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46(1), 182–189 (2010). doi: 10.1016/j.automatica.2009.10.027 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Romero, J., Ortega, R.: A Globally exponentially stable tracking controller for mechanical systems with friction using position feedback. In: Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems, pp. 371–376 (2013)Google Scholar
  15. 15.
    Stamnes, Ø.N., Aamo, O.M., Kaasa, G.-O.: A constructive speed observer design for general Euler–Lagrange systems. Automatica 47(10), 2233–2238 (2011). doi: 10.1016/j.automatica.2011.08.006 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Do, K., Jiang, Z.-P., Pan, J., Nijmeijer, H.: A global output-feedback controller for stabilization and tracking of underactuated ODIN: a spherical underwater vehicle. Automatica 40(1), 117–124 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Andrieu, V., Praly, L.: A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica 45(8), 1789–1798 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Besançon, G., Battilotti, S., Lanari, L.: A new separation result for a class of quadratic-like systems with application to Euler–Lagrange models. Automatica 39(6), 1085–1093 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Loría, A., Panteley, E.: Cascaded nonlinear time-varying systems: analysis and design. Advanced Topics in Control Systems Theory, pp. 23–64. Springer, Berlin (2005)Google Scholar
  20. 20.
    Mabrouk, M.: Triangular form for Euler–Lagrange systems with application to the global output tracking control. Nonlinear Dyn. 60(1–2), 87–98 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ammar, S., Mabrouk, M.: Observer and output feedback stabilisation for a class of nonlinear systems. Int. J. Control 83(5), 983–995 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tavan, M., Khaki-Sedigh, A., Pakzad, S.: Direct and indirect output feedback design for TORA system. In: American Control Conference (ACC), pp. 4649–4652 (2014)Google Scholar
  23. 23.
    Yih, C.-C.: Extended Nicosia–Tomei velocity observer-based robot-tracking control. IET Control Theory Appl. 6(1), 51–61 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Loría, A.: Uniform global position feedback tracking control of mechanical systems without friction. In: American Control Conference (ACC), pp. 5722–5727 (2013)Google Scholar
  25. 25.
    Slotine, J.-J.E., Li, W.: Composite adaptive control of robot manipulators. Automatica 25(4), 509–519 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chang, D.E., McLenaghan, R.G.: Geometric criteria for the quasi-linearization of the equations of motion of mechanical systems. IEEE Trans. Autom. Control 58(4), 1046–1050 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bedrossian, N.S.: Nonlinear Control Using Linearizing Transformations. Massachusetts Institute of Technology, Cambridge (1991)Google Scholar
  28. 28.
    Bedrossian, N.S.: Linearizing coordinate transformations and Riemann curvature. In: Proceedings of the 31st IEEE Conference on Decision and Control, pp. 80–85 (1992)Google Scholar
  29. 29.
    Loría, A.: From feedback to cascade-interconnected systems: Breaking the loop. In: 47th IEEE Conference on Decision and Control, pp. 4109–4114 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mehdi Tavan
    • 1
  • Ali Khaki-Sedigh
    • 2
  • Mohammad Reza Arvan
    • 3
  • Ahmad Reza Vali
    • 3
  1. 1.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Industrial Control Centre of Excellence, Faculty of Electrical EngineeringK. N. Toosi University of TechnologyTehranIran
  3. 3.Department of Electrical EngineeringMalek-Ashtar University of TechnologyTehranIran

Personalised recommendations