Advertisement

Nonlinear Dynamics

, Volume 81, Issue 1–2, pp 833–842 | Cite as

Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms

  • Yungqing Yang
  • Xin Wang
  • Zhenya Yan
Original Paper

Abstract

We investigate optical temporal rogue waves of the generalized nonlinear Schrödinger (NLS) equation with higher-order odd and even terms and space- and time-modulated coefficients, which includes the NLS equation, Lakshmanan–Porsezian–Daniel (LPD) equation, Hirota equation, Chen–Lee–Liu equation, and Kaup–Newell derivative NLS equation. Based on the similarity reduction method, the generalized NLS equation can be reduced to the integrable LPD–Hirota equation under a set of constraint conditions, from which the solutions of generalized NLS equation can be obtained in the basis of solutions of the LPD–Hirota equation and the similarity transformation. In particular, the first- and second-order self-similar rogue wave solutions of the generalized NLS equation are derived under different parameters, and the contour profiles and density evolutions of self-similar rogue wave solutions are given to study their wave structures and dynamic properties. At the same time, the motions of the hump and valleys related to the self-similar rogue waves are also given, from which we can control and manage the self-similar rogue waves by adjusting the third-order dispersion term. These results may be useful in nonlinear optics and related fields.

Keywords

The generalized nonlinear Schrödinger (NLS) equation The LPD–Hirota equation  Similarity reduction method Rogue wave solutions Motions of the hump and valleys 

Notes

Acknowledgments

The authors would like to thank the referees for their valuable suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 61178091, 11326165), Zhejiang Provincial Natural Science Foundation of China (No. LQ12A01008), and China Postdoctoral Science Foundation (No. 2014M550863).

References

  1. 1.
    Garrett, C., Gemmrich, J.: Rogue waves. Phys. Today 62, 62 (2009)CrossRefGoogle Scholar
  2. 2.
    Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional rogue waves in non-stationary parabolic potentials. Phys. Rev. E 82, 036610 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)CrossRefGoogle Scholar
  5. 5.
    Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947 (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375, 4274 (2011)MATHCrossRefGoogle Scholar
  7. 7.
    Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)CrossRefGoogle Scholar
  8. 8.
    Akhmediev, N., Ankiewicz, A., Taki, M.: Are rogue waves robust against perturbations? Phys. Lett. A 373, 675 (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Yan, Z.Y.: Rogue waves in nonlinear science. J. Phys. Conf. Ser. 400, 012084 (2012)CrossRefGoogle Scholar
  10. 10.
    Hennig, H.: Taming nonlinear freak waves. Physics 7, 31 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)CrossRefGoogle Scholar
  12. 12.
    Bludov, YuV, Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)CrossRefGoogle Scholar
  13. 13.
    Ankiewicz, A., Soto-Crespoand, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bandelow, U., Akhmediev, N.: Persistence of rogue waves in extended nonlinear Schrödinger equations: integrable Sasa–Satsuma case. Phys. Lett. A 376, 1558 (2012)MATHCrossRefGoogle Scholar
  15. 15.
    Chen, S.: Twisted rogue-wave pairs in the Sasa–Satsuma equation. Phys. Rev. E 88, 023202 (2013)CrossRefGoogle Scholar
  16. 16.
    Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014)CrossRefGoogle Scholar
  17. 17.
    Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 063507 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, L., Porsezian, K., He, J.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)CrossRefGoogle Scholar
  19. 19.
    Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)CrossRefGoogle Scholar
  20. 20.
    Guo, B., Ling, L.: Rogue Wave, Breathers and bright-dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)CrossRefGoogle Scholar
  21. 21.
    Cheng, X.P., Wang, J., Li, J.: Controllable rogue waves in coupled nonlinear Schrodinger equations with varying potentials and nonlinearities. Nonlinear Dyn. 77, 545 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yan, Z.Y.: Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross-Pitaevskii equations with varying potentials. Nonlinear Dyn. 79, 2515 (2015)CrossRefGoogle Scholar
  23. 23.
    Ohta, Y., Yang, J.: Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 86, 036604 (2012)CrossRefGoogle Scholar
  24. 24.
    Ankiewicz, A., Soto-Crespo, J.M., Chowdhury, M.A., Akhmediev, N.: Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift. J. Opt. Soc. Am. B 30, 87 (2013)CrossRefGoogle Scholar
  25. 25.
    Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (2003)Google Scholar
  26. 26.
    Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, New York (2003)Google Scholar
  27. 27.
    Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B Quantum Semiclassical Opt. 7, R53 (2005)CrossRefGoogle Scholar
  28. 28.
    Yan, Z.Y.: Nonautonomous “rogons” in the inhomogeneous nonlinear Schrödinger equation with variable coefficients. Phys. Lett. A 374, 672 (2010)MATHCrossRefGoogle Scholar
  29. 29.
    Yan, Z.Y., Dai, C.Q.: Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients. J. Opt. 15, 064012 (2013)CrossRefGoogle Scholar
  30. 30.
    Chao, D., Zhou, G., Zhang, J.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)CrossRefGoogle Scholar
  31. 31.
    Zhong, W., Belić, M.R., Huang, T.: Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 87, 065201 (2013)CrossRefGoogle Scholar
  32. 32.
    Loomba, S., Kaur, H.: Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation. Phys. Rev. E 88, 062903 (2013)CrossRefGoogle Scholar
  33. 33.
    Yang, R.C., Hao, R.Y., Li, L., Li, Z.H., Zhou, G.S.: Dark soliton solution for higher-order nonlinear Schrodinger equation with variable coefficients. Opt. Commun. 242, 285 (2004)CrossRefGoogle Scholar
  34. 34.
    Zhao, L.: Dynamics of nonautonomous rogue waves in Bose–Einstein condensate. Ann. Phys. 329, 73 (2013)MATHCrossRefGoogle Scholar
  35. 35.
    Porsezian, K., Hasegawa, A., Serkin, V.N., Belyaeva, T.L., Ganapathy, R.: Dispersion and nonlinear management for femtosecond optical solitons. Phys. Lett. A 361, 504 (2007)CrossRefGoogle Scholar
  36. 36.
    Herr, T., Brasch, V., Jost, J.D., Wang, C.Y., Kondratiev, N.M., Gorodetsky, M.L., Kippenberg, T.J.: Temporal solitons in optical microresonators. Nat. Photon. 8, 145 (2014)CrossRefGoogle Scholar
  37. 37.
    Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phy. Rev. E 89, 012907 (2014)CrossRefGoogle Scholar
  38. 38.
    Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483 (1988)CrossRefGoogle Scholar
  40. 40.
    Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798 (1978)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Chen, H.H., Lee, Y.C., Lin, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490 (1979)MATHCrossRefGoogle Scholar
  42. 42.
    Bluman, G.W., Kumei, S.: Symmetries and differential equations. Springer, New York (1989)MATHCrossRefGoogle Scholar
  43. 43.
    Bluman, G.W., Yan, Z.Y.: Nonclassical potential solutions of partial differential equations. Eur. J. Appl. Math. 16, 239 (2005)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Dysthe, K.B., Trulsen, K.: Note on breather type solutions of the NLS as models for freak-waves. Phys. Scr. T82, 48 (1999)CrossRefGoogle Scholar
  45. 45.
    Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)CrossRefGoogle Scholar
  46. 46.
    Ling, L., Zhao, L.: Simple determinant representation for rogue waves of the nonlinear Schrödinger equation. Phys. Rev. E 88, 043201 (2013)CrossRefGoogle Scholar
  47. 47.
    Sasa, N., Satsuma, J.: New-type soliton solution for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 60, 409 (1991)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Malomed, B.A., Sasa, N., Satsuma, J.: Evolution of a damped soliton in a higher-order nonlinear Schrödinger equation. Chaos Solitons Fract. 1, 383 (1991)MATHCrossRefGoogle Scholar
  49. 49.
    Mihalache, D., Torner, L., Moldoveanu, F., Panoiu, N.C., Truta, N.: Soliton solutions for a perturbed nonlinear Schrödinger equation. J. Phys. A Math. Gen. 26, L757 (1993)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Mihalache, D., Torner, L., Moldoveanu, F., Panoiu, N.C., Truta, N.: Inverse-scattering approach to femtosecond solitons in monomode optical fibers. Phys. Rev. E 48, 4699 (1993)CrossRefGoogle Scholar
  51. 51.
    Mihalache, D., Panoiu, N.C., Moldoveanu, F., Baboiu, D.M.: The Riemann problem method for solving a perturbed nonlinear Schrodinger equation describing pulse propagation in optic fibres. J. Phys. A Math. Gen. 27, 6177 (1994)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Ghosh, S., Kundu, A., Nandy, S.: Soliton solutions, Liouville integrability and gauge equivalence of Sasa Satsume equation. J. Math. Phys. 40, 1993 (1999)MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433 (1984)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDES and their integrability: I. Inverse Probl. 3, 229 (1987)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean UniversityZhoushanChina
  2. 2.Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSSChinese Academy of SciencesBeijingChina
  3. 3.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina

Personalised recommendations