Nonlinear Dynamics

, Volume 81, Issue 1–2, pp 753–763 | Cite as

Conservation laws, multipliers, adjoint equations and Lagrangians for Jaulent–Miodek and some families of systems of KdV type equations

Original Paper


In this paper, we will show and integrate the ‘multiplier’ and ‘adjoint equations and Lagrangian’ approaches to the construction of conservation laws. The details will reveal how the method lends itself to higher-order solutions of the adjoint equation. Amongst other things, the differences here involves the determination of the solutions of the adjoint equation via the multipliers.


Conservation laws Multipliers Adjoint equations Jaulent–Miodek KdV type equations 


  1. 1.
    Ostrovsky, L.A., Grue, J.: Evolution equations for strongly nonlinear internal waves. Phys. Fluids 15(10), 2934–2948 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jaulent, M., Miodek, I.: Nonlinear evolution equations associated with ‘energy dependent Shrödinger potentials’. Lett. Math. Phys. 1, 243–250 (1976)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Guererro, F.G., Alonso, L.M.: Hamiltonian formulation for the Jaulent–Miodek family of nonlinear evolution equations. Lettere al Nuovo Cimento 27(1), 28–31 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Laddomada, C., Gui-Zhang, T.: Bäcklund transformations of the Jaulent–Miodek equations. Lett. Math. Phys. 6, 453–462 (1982)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ganji, D.D., Jannatabadi, M., Mohseni, E.: Application of Hes variational iteration method to nonlinear Jaulent–Miodek equations and comparing it with ADM. J. Comput. Appl. Math. 207, 35–45 (2007)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kara, A.H.: A symmetry invariance analysis of the multipliers and conservation laws of the Jaulent–Miodek and some families of systems of KdV type equations. J. Nonlinear Math. Phys. 16, 149–156 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, De-Yin, Tian, Bo, Jiang, Yan, Sun, Wen-Rong: Soliton solutions and Bäcklund transformations of a (2+1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy. Nonlinear Dyn. 78, 2341–2347 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Krishnan, E.V., Triki, H., Labidi, M., Biswas, A.: A study of shallow water waves with Gardners equation. Nonlinear Dyn. 66, 497–507 (2011)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Smaoui, Nejib, Al-Jamal, Rasha H.: Boundary control of the generalized Kortewegde VriesBurgers equation. Nonlinear Dyn. 51, 439–446 (2008)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Noether, E.: Invariante variationsprobleme, Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, 2 (1918) 235 (English translation in Transport Theory and Statistical Physics, 1 (1971) 186)Google Scholar
  11. 11.
    Anco, S., Bluman, G.: Direct construction method for conservation laws of partial differential equations Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13, 545 (2002)MATHMathSciNetGoogle Scholar
  12. 12.
    Ibragimov, N.: A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ibragimov, N.: Integrating factors, adjoint equations and Lagrangians. J. Math. Anal. Appl. 318, 742–757 (2006)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kara, A.H., Mahomed, F.M.: Relationship between symmetries and conservation laws Int. J. Theor. Phys. 39(1), 23–40 (2000)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kara, A.H., Mahomed, F.M.: A basis of conservation laws for partial differential equations. J. Nonlinear Math. Phys. 9, 60–72 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Euler, N., Euler, M.: On nonlocal symmetries and nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierarchies. J. Nonlinear Math. Phys. arXiv: 0811.1105

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingPeople’s Rebublic of China
  2. 2.School of MathematicsUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations