Nonlinear Dynamics

, Volume 81, Issue 1–2, pp 257–264 | Cite as

Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts

  • Zhen Wang
  • Zhong Wu
Original Paper


To attenuate the effects of parameter variations and disturbances of flexible spacecrafts on attitude control accuracy and stability, a composite control approach by combining nonlinear disturbance observer (NDO) and feedback linearization (FBL) control is proposed. In this paper, the multiple disturbances that act on spacecrafts from flexible appendages, space environment, and unmodelled dynamics are considered as an ‘equivalent’ disturbance. The proposed NDO is used to estimate and compensate for the disturbances through feedforward. Stability and tracking performance of the NDO are then analyzed. Moreover, the stability of the FBL + NDO composite control approach is established through the Lyapunov method. Simulation results show that the NDO can estimate disturbances and reduce the effect of disturbances on spacecrafts through feedforward compensation. Robust dynamic performance and attitude control accuracy are effectively improved.


Flexible spacecraft Feedback linearization control Nonlinear disturbance observer Multiple disturbances 



This work was supported by the National Natural Science Foundation of China 10772011, the National Basic Research Program of China (973 Program) 2012CB720003, and the Fundamental Research Funds for the Central Universities YWF-10-01- A22


  1. 1.
    Liu, H., Guo, L., Zhang, Y.M.: An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn. 67, 2081–2088 (2012)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Hu, Q.: Robust adaptive sliding-mode fault-tolerant control with L\(_{2}\)-gain performance for flexible spacecraft using redundant reaction wheels. IET Control Theory Appl. 4(6), 1055–1070 (2009)CrossRefGoogle Scholar
  3. 3.
    Breakwell, J.A.: Optimal feedback slewing of flexible spacecraft. J. Guid. Control 4(5), 472–479 (1981)CrossRefGoogle Scholar
  4. 4.
    Ben-Asher, J., Burns, J.A., Cliff, E.: Time-optimal slewing of flexible spacecraft. J. Guid. Control Dyn. 15(2), 360–367 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    Lo, S.C., Chen, Y.P.: Smooth sliding-mode control design for spacecraft attitude tracking maneuvers. J. Guid. Control Dyn. 18(6), 1345–1349 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Hu, Q.L., Wang, Z.D., Gao, H.J.: Sliding mode and shaped input vibration control of flexible systems. IEEE Trans. Aerosp. Electron. Syst. 44(2), 503–519 (2008)CrossRefGoogle Scholar
  7. 7.
    Hu, Q.L., Xiao, B., Wang, D.W., Poh, E.K.: Attitude control of spacecraft with actuator uncertainty. J. Guid. Control Dyn. 36(6), 1771–1776 (2013)CrossRefGoogle Scholar
  8. 8.
    Luo, W.C., Chu, Y.C., Ling, K.V.: H\(_\infty \) Inverse optimal attitude-tracking control of rigid spacecraft. J. Guid. Control Dyn. 28(3), 481–493 (2005)CrossRefGoogle Scholar
  9. 9.
    Hu, Q., Xiao, B., Friswell, M.I.: Fault tolerant control with \(\text{ H }_\infty \) performance for attitude tracking of flexible spacecraft. IET Control Theory Appl. 6(10), 1388–1399 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Anton, H.J.: Adaptive spacecraft attitude tracking control with actuator saturation. J. Guid. Control Dyn. 33(5), 1692–1695 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, Z.Y., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Autom. Control 54(3), 600–605 (2009)CrossRefGoogle Scholar
  12. 12.
    Bustan, D., Sani, S.K., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE Trans. Mechatron. 19(4), 1404–1411 (2014)Google Scholar
  13. 13.
    Ali, I., Radice, G., Kim, J.: Backstepping control design with actuator torque bound for spacecraft attitude maneuver. J. Guid. Control Dyn. 33(1), 254–259 (2010)CrossRefGoogle Scholar
  14. 14.
    Aicardi, M., Cannata, G., Casalino, G.: Attitude feedback control: unconstrained and nonholonomic constrained cases. J. Guid. Control Dyn. 23(4), 657–664 (2000)CrossRefGoogle Scholar
  15. 15.
    Bang, H., Myung, H.S., Tahk, M.J.: Nonlinear momentum transfer control of spacecraft by feedback linearization. J. Spacecr. Rockets 39(6), 866–873 (2002)CrossRefGoogle Scholar
  16. 16.
    Sinclair, A.J., Hurtado, J.E., Junkins, J.L.: Linear feedback control using quasi velocities. J. Guid. Control Dyn. 29(6), 1309–1314 (2006)CrossRefGoogle Scholar
  17. 17.
    Malekzadeh, M.: Flexible spacecraft control using robust feedback linearization. In: Proceedings of 2010th AIAA Guidance, Navigation, and Control Conference. Toronto: American Institute of Aeronautics and Astronautics. AIAA-8295 (2010)Google Scholar
  18. 18.
    Yao, X.M., Guo, L.: Composite anti-disturbance control for markovian jump nonlinear systems via disturbance observer. Automatica 49, 2538–2545 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wei, X.J., Guo, L.: Composite disturbance-observer-based control and terminal sliding mode control for nonlinear systems with disturbances. Int. J. Control 82(6), 1082–1098 (2009)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, M., Chen, W.H.: Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. Int. J. Adapt. Control Signal Process. 24, 51–64 (2010)MATHGoogle Scholar
  21. 21.
    Qian C. S., Sun C. Y., Huang Y. Q., et al.: Design of flight control system for a hypersonic gliding vehicle based on nonlinear disturbance observer. In: Proceedings of the 10th IEEE International Conference on Control and Automation. Hangzhou: IEEE press. 1573–1577 (2013)Google Scholar
  22. 22.
    Wen X.Y., Guo L.: Estimation and rejection for disturbances using composite nonlinear observer. In: Proceedings of 2010 International Conference on Networking, Sensing and Control. 280–284(2010)Google Scholar
  23. 23.
    Malekzadeh, M., Naghash, A., Talebi, H.A.: A robust nonlinear control approach for tip position tracking of flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2423–2434 (2011)CrossRefGoogle Scholar
  24. 24.
    Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Satellite attitude control by quaternion-based backstepping. IEEE Trans. Control Syst. Technol. 17(1), 227–232 (2009)CrossRefGoogle Scholar
  25. 25.
    Xia, Y.Q., Zhu, Z., Fu, M.Y., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)CrossRefGoogle Scholar
  26. 26.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Instrumentation Science and Optoelectronics EngineeringBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations