Advertisement

Nonlinear Dynamics

, Volume 80, Issue 3, pp 1173–1185 | Cite as

On the orbital stability of the motion of a rigid body in the case of Bobylev–Steklov

  • H. M. Yehia
  • S. Z. Hassan
  • M. E. Shaheen
Original Paper
  • 145 Downloads

Abstract

The problem of motion of the heavy rigid body about a fixed point admits simple periodic solutions in few cases. Examples are the pendulum-like plane motions, Grioli’s case and Bobylev–Steklov case. Noting that only stable motions can be realized due to the inevitable deviations in the initial conditions and in the determination of the distribution of mass in the body, the study of stability acquires an increasing importance. The stability of plane motions was considered in several works. Grioli’s case was studied recently by Markeyev. The aim of the present work is to study stability in the linear approximation for Bobylev and Steklov’s case. The use of Euler–Poisson equations and their integrals for the study of stability of periodic motions is quite complicated. Instead, we use a single second-order differential equation obtained by one of us, by the maximal reduction of the order of equations of motion using their general integrals. This equation is satisfied by the trajectory of the trace of the vertical on the Poisson sphere fixed in the body. The orbital stability of a solution means that the perturbed trajectory remains near to the unperturbed, after perturbations preserving the values of general integrals. After classification of the two possible families of trajectories, equation in variation is obtained for each family. In the three-dimensional space of parameters affecting stability, we determine the surfaces carrying primitive periodic solutions, and thus separating stability and instability zones. Both equations in the variations were solved also numerically on certain sections of the parameter space. Numerical results accomplish the identification of zones lying between surfaces as stability or instability zones and do not show any traces of other zones, rather than those detected by analytical study.

Keywords

Rigid body Bobylev–Steklov case Periodic motions Permanent rotations Stability Orbital stability 

Notes

Acknowledgments

The authors thank two anonymous referees for their remarks, which have helped better presentation of the paper.

References

  1. 1.
    Kovalevskaya, S.: Sur le problėme de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12(2), 177–232 (1889)MathSciNetGoogle Scholar
  2. 2.
    Leimanis, E.: The General Problem of Motion of Coupled Rigid Bodies About a Fixed Point. Springer, Berlin (1965)CrossRefMATHGoogle Scholar
  3. 3.
    Gorr, G.V., Kudryashova, V., Stepanova, L.V.: Classical Problems of Motion of a Rigid Body. Evolution and Contemporary State. Kiev, Naukova Dumka (1978) (in Russian)Google Scholar
  4. 4.
    Grammel, R.: Der Kreisel Seine Theorie und Seine Anwendungen. Springer, Berlin (1950)CrossRefMATHGoogle Scholar
  5. 5.
    Rumyantsev, V.V.: Stability of permanent rotations of a heavy rigid body. Prikl. Math. Mech. 20(1), 51–66 (1956)Google Scholar
  6. 6.
    Schiehlen, W.O., Weber, H.I.: On the stability of Staude’s permanent rotations with damping. Ingenieur-Archiv. 46, 281–292 (1977)Google Scholar
  7. 7.
    Bilimoich, A.D.: Equations of motion of a heavy rigid body about a fixed point. In: Collection of Papers Devoted to Prof. G. K. Suslov, Kiev, pp. 23–74 (1911)Google Scholar
  8. 8.
    Hess, W.: Üher die Eulerschen Bewegungsgleichungen und eine neue particuläre lösung des problems der Bewegung eines starren schweren körpers um einen festen Punkt. Math. Ann. 37, 153–181 (1890)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Schiff, P.A.: On equations of motion of a rigid body. Mat. Sbornik 24, 169–177 (1903)Google Scholar
  10. 10.
    Stäckel, P.: Die reduzierten differenzialeichungen der Bewegung des schweren unsymmetrichen Kreisels. Math. Ann. 67, 399–432 (1909)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kharlamova, E.I.: Reduction of the problem of motion of a body with a fixed point, to a single differential equation. Mekh. Tverdogo Tela. 1, 107–116 (1969)Google Scholar
  12. 12.
    Yehia, H.M.: On the reduction of the order of differential equations of motion of a rigid body about a fixed point. Moscow Univ. Mech. Bull. 31(5/6), 37–39 (1976)Google Scholar
  13. 13.
    Yehia, H.M.: On the reduction of the order of equations of motion of a gyrostat in an axisymmetric field. J. de Mećanique thé orique et appliquée 2(3), 451–462 (1983)MATHGoogle Scholar
  14. 14.
    Yehia, H.M.: On the reduction of the order of differential equations of motion of a rigid body about a fixed point to a single differential equation. Mech. Solids 19(4), 61–64 (1984)Google Scholar
  15. 15.
    Yehia, H.M.: On the stability of plane motion of a rigid body about fixed point in a Newtonian field of force. Moscow Univ. Mech. Bull. 36(3/4), 41–44 (1981)Google Scholar
  16. 16.
    Yehia, H.M.: Qualitative investigations of a rigid body about a fixed point. Prikl. Mat. Mech. 45(4), 454–458 (1981)Google Scholar
  17. 17.
    Yehia, H.M.: On the stability of plane motions of a heavy rigid body about a fixed point. ZAMM. Z. Angew. Math. Mech. 67(12), 641–648 (1987)CrossRefMATHGoogle Scholar
  18. 18.
    Yehia, H.M., El-Hadidy, E.G.: On the orbital stability of pendulum-like vibrations of a rigid body carrying a rotor. Regul. Chaotic. Dyn. 18(5), 539–552 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Tkhai, V., Schvigin, A.L.: Problems of investigation of stability and stabilization of motion (Ed. V. Rumyantsev) Moscow, Computing centre of the Russian Academy of Science, part 2, pp. 149–157 (2000)Google Scholar
  20. 20.
    Dovbysh, S.A.: Oscillational properties of plane motions in the dynamics of a symmetric rigid body. Izv. R.A.N. Mekh. Tverdogo. Tela. 25(4), 11–19 (1990)Google Scholar
  21. 21.
    Markeev, A.P.: Plane and quasi-plane rotations of a heavy rigid body about a fixed point. Izv. AN SSSR. Mekhanika Tverdogo Tela 23(4), 29–36 (1988)Google Scholar
  22. 22.
    Markeev, A.P.: The stability of the plane motions of a rigid body in the Kovalevskaya case. Prikl. Mat. Mehk. 65(1), 51–58 (2000)MathSciNetGoogle Scholar
  23. 23.
    Markeev, A.P.: The pendulum- like motions of a rigid body in the Goryachev–Chaplygin case. Prikl. Mat. Mehk 68(2), 282–293 (2004)Google Scholar
  24. 24.
    Bardin, B.S.: Stability problem for pendulum-type motions of a rigid body in the Goriachev–Chaplygin case. Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, pp. 14–21 (2007) [Mech. Solids, 2007, vol. 42, No. 2, pp. 177–183]Google Scholar
  25. 25.
    Bardin, B.S.: On the orbital stability of pendulum-like motions of a rigid body in the Bobylev–Steklov case. Regul. Chaotic Dyn. 15(6), 702–714 (2010)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Bardin, B.S., Rudenko, T.V., Savin, A.A.: On the orbital stability of planar periodic motions of a rigid body in the Bobylev–Steklov case. Regul. Chaotic Dyn. 17(6), 533–546 (2012)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Grioli, G.: Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico. Ann. Mat. Pure ed Appl. 4, 271–281 (1947)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Bryum, A.Z.: Investigation of the regular precession of a heavy rigid body with a fixed point by Lyapunov’s first method. Mech. Solids Naukova Dumka Kiev. 19, 68–72 (1987)MATHGoogle Scholar
  29. 29.
    Mozalevskaya, G.V., Kharlamov, A.P., Kharlamova, Ye.I.: Drift of G. Grioli’s gyroscope. In: Mechanics of Solids, Naukova Dumka, Kiev. 24 15–25 (1992)Google Scholar
  30. 30.
    Tkhai, V.N.: The stability of regular Grioli precessions. J. Appl. Math. Mehk. 64, 811–819 (2000)MathSciNetGoogle Scholar
  31. 31.
    Markeev, A.P.: On stability of regular precessions of a non-symmetric gyroscope. Regul. Chaotic Dyn. 8(2), 297–304 (2003)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Markeev, A.P.: The stability of the Grioli precession. J. Appl. Math. Meck. 67, 497–510 (2003)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Markeev, A.P.: On the Steklov case in rigid body dynamics. Regul. and Chaotic Dyn. 10(1), 81–93 (2005)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Bobylev, D.K.: On a particular solution of the differential equations of rotation of a rigid body about a fixed point. Mat. Sbornik Kruzh. Liub. Mat. Nauk. 16, 544–581 (1896)Google Scholar
  35. 35.
    Steklov, V.A.: A case of motion of a rigid body with a fixed point. Trudy Otd. Fiz. Nauk Obsch. Liub. Estest. 8, 19–21 (1896)Google Scholar
  36. 36.
    Bryum, A.Z.: On the equations of variations for a periodic motion of Kovalevskaya’s gyroscope. Mekh. Tverdogo Tela 18, 62–66 (1986)MATHMathSciNetGoogle Scholar
  37. 37.
    Bryum, A.Z., Savchenko, AYa.: On the orbital stability of a periodic solution of the equations of motion of a Kovalevskaya gyroscope. Prikl. Matem. Mekh. 50(6), 967–973 (1986)MathSciNetGoogle Scholar
  38. 38.
    Arscott, F.M.: Periodic Differential Equations. Pergamon Press, Oxford (1964)MATHGoogle Scholar
  39. 39.
    Yakubovich, V.A., Starzhinsky, V.M.: Linear Differential Equations with Periodic Coefficients, vol. 1, 2. Wiley, London (1975)MATHGoogle Scholar
  40. 40.
    Magnus, W., Winkler, S.: Hill’s Equation. Interscience, NY (1966)Google Scholar
  41. 41.
    Malkin, I.G.: Theory of Stability of Motion. Gostekhizdat, Moscow (1952). (in Russian)MATHGoogle Scholar
  42. 42.
    Borisov, A.V., Mamaev, I.C.: Dynamics of the Rigid Body. Hamiltonian Methods, Integrability and Chaos. Institute of Computer Research, Moscow-Izhevsk (2005). (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Mathematics, Faculty of EducationDammam UniversityAl-JubailSaudi Arabia
  3. 3.Department of MathematicsPort Said UniversityPort SaidEgypt

Personalised recommendations