Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 983–987 | Cite as

Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion

Original Paper


This work studies the optical solitons with time-modulated nonlinearities and spatiotemporal dispersion. Four types of nonlinearity—Kerr law nonlinearity, parabolic law nonlinearity, power law nonlinearity, and dual-power law nonlinearity—are considered. The non-auto-Bäcklund transformation is obtained. Analytical soliton solutions are constructed. The presented results can be applied in the area of dispersion- and nonlinearity-managed solitons.


Solitons Spatiotemporal dispersion Non-Kerr nonlinearity Non-auto-Bäcklund transformation 



The research was supported by the Scientific Research Fund of Hubei Provincial Education Department (Grant No. B2013193).


  1. 1.
    Zhong, W.P., Belić, M.: Breather solutions of the generalized nonlinear Schrödinger equation with spatially modulated parameters and a special external potential. Eur. Phys. J. Plus 129, 1 (2014)CrossRefGoogle Scholar
  2. 2.
    Yan, Z., Dai, C.: Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients. J. Opt. 15, 064012 (2013)CrossRefGoogle Scholar
  3. 3.
    Belmonte-Beitia, J., Pérez-García, V.M.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102–064105 (2007)CrossRefGoogle Scholar
  4. 4.
    Dai, C.Q., Wang, Y.Y., Tian, Q., Zhang, J.F.: The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrödinger equation. Ann. Phys. 327, 512 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Triki, H., Hayat, T., Aldossary, O.M., Biswas, A.: Bright and dark solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients. Opt. Laser Technol. 44, 2223 (2012)CrossRefGoogle Scholar
  6. 6.
    Triki, H., Wazwaz, A.M.: A one-soliton solution of the ZK (m, n, k) equation with generalized evolution and time-dependent coefficients. Nonlinear Anal. Real 12, 2822 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Eslami, M., Mirzazadeh, M., Fathi Vajargah, B., Biswas, A.: Optical solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients by the first integral method. Optik 125, 3107 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhou, Q., Zhu, Q., Bhrawy, A.H., Moraru, L., Biswas, A.: Optical solitons with spatially-dependent coefficients by Lie symmetry. Optoelectron. Adv. Mater. 8, 800 (2014). (2014)Google Scholar
  9. 9.
    Wazwaz, A.M., Triki, H.: Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 1122 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Triki, H., Wazwaz, A.M.: Traveling wave solutions for fifth-order KdV type equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 19, 404 (2014)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)CrossRefGoogle Scholar
  12. 12.
    Tian, B., Gao, Y.T.: Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Tang, X.Y., Shukla, P.K.: Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrödinger equation with an external potential. Phys. Rev. A 76, 013612 (2007)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Tian, Q., Wu, L., Zhang, J.F., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity. Phys. Rev. E 83, 016602 (2011)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Biswas, A., Cleary, C., Watson Jr, J.E., Milovic, D.: Optical soliton perturbation with time-dependent coefficients in a log law media. Appl. Math. Comput. 217, 2891 (2010)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Eslami, M., Mirzazadeh, M., Biswas, A.: Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time-dependent coefficients by simplest equation approach. J. Mod. Opt. 60, 1627 (2013)CrossRefGoogle Scholar
  17. 17.
    Saha, M., Sarma, A.K.: Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms. Commun. Nonlinear Sci. Numer. Simul. 18, 2420 (2013)Google Scholar
  18. 18.
    Zhou, Q.,  Zhu, Q.:  Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Random Complex Media (in press). doi: 10.1080/17455030.2014.956847
  19. 19.
    Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 441 (2014)Google Scholar
  20. 20.
    Savescu, M., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Moraru, L., Biswas, A.: Optical solitons with quadratic nonlinearity and spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 619 (2014)Google Scholar
  21. 21.
    Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger’s equation. Nonlinear Dyn. 63, 623 (2011)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Milovic, D., Moraru, L., Savescu, M., Biswas, A.: Optical solitons with polynomial and triple-power law nonlinearities and spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 235 (2014)Google Scholar
  23. 23.
    Zhou, Q.: Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect. Optik 125, 3142 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhou, Q., Zhu, Q., Liu, Y., Yu, H., Yao, P., Biswas, A.: Thirring optical solitons in birefringent fibers with spatio-temporal dispersion and Kerr law nonlinearity. Laser Phys. 25, 015402 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhou, Q., Zhu, Q., Yu, H., Liu, Y., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in a cascaded system. Laser Phys. 25, 015402 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhou, Q., Yao, D., Chen, F.: Analytical study of optical solitons in media with Kerr and parabolic-law nonlinearities. J. Mod. Opt. 60, 1652 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringWuhan Donghu UniversityWuhanPeople’s Republic of China

Personalised recommendations