Advertisement

Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 969–981 | Cite as

On singular orbits and a given conjecture for a 3D Lorenz-like system

  • Haijun Wang
  • Xianyi Li
Original Paper

Abstract

We revisit a 3D chaotic system in Dias et al. (Nonlinear Anal Real World Appl 11(5): 3491–3500, 2010) and mainly consider its singular orbits not yet investigated: homoclinic and heteroclinic orbits and singularly degenerate heteroclinic cycles. We first consider the existence of homoclinic and heteroclinic orbits. Our results, one of which shows the existence of two heteroclinic orbits for \(c \ge 2a > 0\) and \(b > 0\), not only further supplement the ones obtained in this literature, but also give something new to theoretically helpfully understand the occurrence of chaos. Further, numerical simulations show that this system has not only two heteroclinic orbits for \(a \le c < 2a, b > 0\) or \(a > c > 0\) and some \( b_{0} \in (0, \frac{a+c}{a-c})\), but also chaotic attractor when heteroclinic orbits disappear. Then, by utilizing a known conclusion, we demonstrate the existence of singularly degenerate heteroclinic cycles in this system. Combining analytical and numerical techniques, it is shown that for the parameter value \(c = 0\) the system presents an infinite set of singularly degenerate heteroclinic cycles, which completely solves a conjecture presented in the above literature for the existence of infinitely many singularly degenerate heteroclinic cycles in the system.

Keywords

3D Lorenz-like system Boundedness Homoclinic and heteroclinic orbit Singularly degenerate heteroclinic cycle  Lyapunov function 

Mathematics Subject Classification

34C23 34C37 34D08 34D20 

Notes

Acknowledgments

This work is partly supported by NSF of China (grant: 61473340, 10771094), the Postgraduate Innovation Project of Jiangsu Province (grant: KYZZ\(_{-}\)0361) and the NSF of Yangzhou University.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Sparrow, C.: The Lorenz equations: bifurcation, chaos, and strange attractor. Springer, New York (1982)Google Scholar
  3. 3.
    Ottino, J.M., Leong, C.W., Rising, H., Swanson, P.D.: Morphological structures produced by mixing in chaotic flows. Nature 333(6172), 419–425 (1988)CrossRefGoogle Scholar
  4. 4.
    Alvarez, G., Li, S., Montoya, F., Pastor, G., Romera, M.: Breaking projective chaos sychronization secure communication using filtering and generalized synchronization. Chaos Solitons Fractals 24(3), 775–783 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647–R650 (1994)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Asakura, H., Takemura, K., Yoshida, Z., Uchida, T.: Collisionless heating of electrons by meandering chaos and its application to a low-pressure plasma source. Jpn. J. Appl. Phys. 36(1), 4493–4496 (1997)CrossRefGoogle Scholar
  7. 7.
    Chen, G.: Controlling chaos and bifurcations in engineer system. CRC Press, Boca Raton (1999)Google Scholar
  8. 8.
    Dias, F.S., Mello, L.F., Zhang, J.G.: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. RWA 11(5), 3491–3500 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9(7), 1465–1466 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Rössler, E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  11. 11.
    Rikitake, T.: Oscillation of a system of disk dynamos. Proc. Camb. Philos. Soc. 54, 89–105 (1958)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Liu, C., Liu, T., Liu, L.: A new chaotic attractor. Chaos Solitons Fractals 22(5), 1031–1038 (2004)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Qiao, Z., Li, X.: Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system. Math. Comput. Model. Dyn. Syst. 20(3), 264–283 (2014)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Li, X., Zhou, Z.: Hopf bifurcation of codimension one and dynamical simulation for a 3D autonomous chaotic system. Bull. Korean Math. Soc. 51(2), 457–478 (2014)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ilyashenko, Y.: Finiteness theorems for limit cycles. American Mathematical Society, Providence (1993)Google Scholar
  16. 16.
    Ferragut, A., Llibre, J., Pantazi, C.: Polynomial vector fields in \({\mathbb{R}}^3\) with infinitely many limit cycles. Int. J. Bifurcat. Chaos 23(2), 1350029 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Li, X., Chu, Y., Zhang, J., Chang, Y.: Nonliear dynamics and circuit implementation for a new Lorenz-like attractor. Chaos Solitons Fractals 41(5), 2360–2370 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Kokubu, H., Roussarie, R.: Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: part I. J. Dyn. Differ. Equ. 16(2), 513–557 (2004)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Llibre, J., Messias, M.: Global dynamics of the Rikitake system. Phys. D 238(3), 241–252 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Messias, M.: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A Math. Theor. 42(11), 115101 (2009)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Llibre, J., Messias, M., Silva, P.R.: On the global dynamics of the Rabinovich system. J. Phys. A Math. Theor. 41(27), 275210 (2008)CrossRefGoogle Scholar
  22. 22.
    Messias, M.: Dynamics at infinity of a cubic Chuas system. Int. J. Bifurcat. Chaos 21(1), 333–340 (2011)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Liu, Y., Yang, Q.: Dynamics of the Lü system on the invariant algebraic surface and at infinity. Int. J. Bifurcat. Chaos 21(9), 2559–2582 (2011)Google Scholar
  24. 24.
    Zhou, T., Cheng, G.: Classification of chaos in 3-D autonomous quadratic system-I: basic framework and methods. Int. J. Bifurcat. Chaos 16(9), 2459–2479 (2006)CrossRefMATHGoogle Scholar
  25. 25.
    Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264–1272 (2012)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Kuzenetsov, Y.A.: Elements of applied bifurcation theory, 3rd edn. Springer, New-York (2004)CrossRefGoogle Scholar
  27. 27.
    Mees, A.I., Chapman, P.B.: Homoclinic and heteroclinic orbits in the double scroll attractor. IEEE Trans. Circuits Syst. 34(9), 1115–1120 (1987)Google Scholar
  28. 28.
    Tigan, G., Constantinescu, D.: Heteroclinic orbits in the \(T\) and the Lü system. Chaos Solitons Fractals 42(1), 20–23 (2009)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Wiggins, S.: Global bifurcations and chaos: analytical methods. Springer, New York (1988)MATHGoogle Scholar
  30. 30.
    Li, T., Chen, G., Chen, G.: On homoclinic and heteroclinic orbits of Chen’s system. Int. J. Bifurcat. Chaos 16(10), 3035–3041 (2006)CrossRefMATHGoogle Scholar
  31. 31.
    Li, X., Wang, H.: Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system. Int. J. Bifurcat. Chaos 21(9), 2695–2712 (2011)CrossRefMATHGoogle Scholar
  32. 32.
    Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal. Real World Appl. 11(4), 2563–2572 (2010)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Li, X., Ou, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Dyn. 65(3), 255–270 (2011)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Li, X., Wang, P.: Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system. Nonlinear Dyn. 73(1–2), 621–632 (2013)MATHGoogle Scholar
  35. 35.
    Yang, Q., Wei, Z.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurcat. Chaos 20(4), 1061–1083 (2010)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    El-Dessokya, M.M., Yassen, M.T., Saleh, E., Aly, E.S.: Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems. Appl. Math. Comput. 218(24), 11859–11870 (2012)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Hale, J.K.: Ordinary diferential equations. Wiley, New York (1969)Google Scholar
  38. 38.
    Silva, C.P.: Shil’nikov’s theorem—a tuitorial. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(10), 675–682 (1993)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Mathematical ScienceYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations