Nonlinear Dynamics

, Volume 80, Issue 4, pp 1801–1810 | Cite as

An iterative method to design optimal non-fragile \({\varvec{H}}_{\varvec{\infty }}\) observer for Lipschitz nonlinear fractional-order systems

  • Elham Amini Boroujeni
  • Hamid Reza Momeni
Original Paper


In this paper, the stability of a nonlinear non-fragile \(H_\infty \) fractional-order observer, based on the fractional-order Lyapunov theorem, is investigated in detail. It is the first time to derive the optimal gain of desired observer among a solution set that satisfies the nonlinear robust non-fragile fractional-order observer stability conditions systematically using linear matrix inequality approach. An iterative linear matrix inequality algorithm is introduced while a boundary condition is unknown during the design procedure. Finally, a fractional-order financial system is introduced to show the effectiveness of the proposed method. It has been shown that not only the iterative method is successful to find the proper boundary condition, but also the performance of the proposed observer is satisfying both non-fragility and robustness to external disturbances with an acceptable accuracy.


Financial system Iterative method Linear matrix inequality Lyapunov stability Non-fragility Robust nonlinear fractional-order observer 



The authors would like to thank Dr. Mahdi Pourgholi for his suggestions and criticism that helped in improving this paper.


  1. 1.
    Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, New York (2010)CrossRefGoogle Scholar
  2. 2.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  3. 3.
    Hilfer, R.: Application of Fractional Calculus in Physics. World Science, Singapore (2000)CrossRefGoogle Scholar
  4. 4.
    Zaslavsky, G.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2006)Google Scholar
  5. 5.
    Butzer, P.L., Westphal, U.: An Introduction to Fractional Calculus. World Science, Singapore (2000)CrossRefGoogle Scholar
  6. 6.
    Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Phys. A 389, 2434–2442 (2010)CrossRefGoogle Scholar
  7. 7.
    Das, S.: Functional Fractional Calculus for System Identification and Controls, 1st edn. Springer, Germany (2008)MATHGoogle Scholar
  8. 8.
    Zemouche, A., Boutayeb, M.: Nonlinear-observer-based synchronization and unknown input recovery. IEEE T Circuits-I 56, 1720–1731 (2009)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Reif, K., Sonnemann, F., Unbehauen, R.: Nonlinear state observation using \(H_\infty \)-filtering riccati design. IEEE Trans. Autom. Control 44, 203–208 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Mart’ınez, R.M., Mata-Machuca, J.L., Guerra, R.M., Le’on, J.A., Fern’andez-Anaya, G.: A new observer for nonlinear fractional order systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA (2011)Google Scholar
  11. 11.
    Dadras, S., Momeni, H.R.: Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA (2011)Google Scholar
  12. 12.
    N’Doye, I., Darouach, M., Zasadzinski, M., Radhy, N.E.: Observers design for singular fractional-order systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA (2011)Google Scholar
  13. 13.
    Jeong, C.S., Yaz, E.E., Bahakeem, A., Yaz, Y.I.: Resilient design of observers with general criteria using LMIs. In: Proceedings of the American Control Conference, Minnesota, USA (2006)Google Scholar
  14. 14.
    Pourgholi, M., Johari Majd, V.: A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization. Chin. Phys. B 20, 120503 (2011)CrossRefGoogle Scholar
  15. 15.
    Boroujeni, E.A., Momeni, H.R.: Lyapunov based design of a nonlinear resilient fractional order observer. In: Proceedings of the 21st Iranian Conference on Electrical Engineering, Mashhad, Iran (2013)Google Scholar
  16. 16.
    Boroujeni, E.A., Momeni, H.R.: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92, 2365–2370 (2012)Google Scholar
  17. 17.
    Li, C., Wang, J., Lu, J.: Observer-based robust stabilisation of a class of non-linear fractional-order uncertain systems: an linear matrix inequalitie approach. IET Control Theory Appl. 6, 2757–2764 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lan, Y.H., Li, W.J., Zhou, Y., Luo, Y.P.: Non-fragile observer design for fractional-order one-sided Lipschitz nonlinear systems. Int. J Autom. Comput. 10, 296–302 (2013)CrossRefGoogle Scholar
  19. 19.
    N’Doye, I., Voos, H., Darouach, M., Schneider, J.G., Knauf, N.: An unknown input fractional-order observer design for fractional-order glucose-insulin system. In: Proceedings of the IEEE EMBS International Conference on Biomedical Engineering and Sciences, Hong Kong, China (2012)Google Scholar
  20. 20.
    N’Doye, I., Voos, H., Darouach, M.: Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE J. Emerg. Sel. Top. Circuits Syst. 3, 442–450 (2013)CrossRefGoogle Scholar
  21. 21.
    Senejohnny, D.M., Delvari, H.: Active sliding observer scheme based fractional chaos synchronization. Commun. Nonlinear Sci. Numer. Simul. 17, 4373–4383 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Chen, WCh.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fract. 36, 1305–1314 (2008)CrossRefGoogle Scholar
  23. 23.
    Podlubny, I.: Fractional Differential Equations. Academie Press, New York (1999)MATHGoogle Scholar
  24. 24.
    Efe, M.O.: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans. Syst. Man Cybern. B 38, 1561–1570 (2008)CrossRefGoogle Scholar
  25. 25.
    Efe, M.O., Kasnakoglu, C.: A fractional adaptation law for sliding mode control. Int. J. Adapt. Control 22, 968–986 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional-order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)Google Scholar
  28. 28.
    Boyd, S., Ghaoui, L., Feron, E.: Linear matrix inequalities in system and control theory. In: Proceedings of the SIAM Studies in Applied Mathematics (1994)Google Scholar
  29. 29.
    Chen, F., Zhang, W.: LMI criteria for robust chaos synchronization of a class of chaotic systems. Nonlinear Anal. Theory 67, 3384–3393 (2007)CrossRefMATHGoogle Scholar
  30. 30.
    Cho, Y.M., Rajamani, R.: A systematic approach to adaptive observer synthesis for nonlinear systems. IEEE Trans. Autom. Control 42, 534–537 (1997)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Fadiga, L., Farges, Ch., Sabatier, J., Moze, M.: On computation of \(H_\infty \) norm for commensurate fractional order systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA (2011)Google Scholar
  32. 32.
    Valério, D.: Ninteger v. 2.3, Fractional Control Toolbox for Matlab, Fractional Derivatives and Applications. Universidadetecnica de Lisboainstituto Superior Tecnico (2005)Google Scholar
  33. 33.
    Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design Conference, Taipei, Taiwan (2004)Google Scholar
  34. 34.
    Gahinet, P., Nemirovski, A., Laub, A., Chilai, M.: LMI Control Toolbox User’s Guide. The Mathworks, Massachusetts (1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Automation and Instruments Laboratory, Electrical Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations