Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 515–527 | Cite as

Painlevé analysis, complete Lie group classifications and exact solutions to the time-dependent coefficients Gardner types of equations

Original Paper


This paper is concerned with the variable-coefficient Gardner (vc-Gardner) types of equations, which arise in fluid dynamics, nonlinear lattice and plasma physics. As its special cases, the generalized cylindrical KdV types of equations are considered simultaneously. By using the combination of Painlevé analysis and Lie group classification method, the integrable conditions, Bäcklund transformations and complete group classifications of the vc-Gardner types of equations are obtained. Then, the exact solutions generated from the Painlevé analysis and symmetry reductions are investigated.


Painlevé analysis Integrable condition Bäcklund transformation Complete group classification Symmetry reduction Exact solution 

Mathematics Subject Classification

37K10 37L20 47G30 



The authors are grateful to the editors and anonymous reviewers for their valuable comments and suggestions.


  1. 1.
    Liu, H., Li, J., Liu, L.: Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations. Nonlinear Dyn. 59, 497–502 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Clarkson, P.: Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. IMA J. Appl. Math. 44, 27–53 (1990)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bluman, G., Cheviakov, A., Anco, S.: Applications of symmetry methods to partial differential equations. In: Antman, S., Marsden, J., Sirovich, L. (eds.) Applied Mathematical Sciences, vol. 168. Springer, New York (2010)Google Scholar
  4. 4.
    Li, J., Xu, T., Meng, X., Zhang, Y., Zhang, H., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443–1455 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Zhang, Y., Li, J., Lv, Y.: The exact solution and integrable properties to the variable-coefficient modified Korteweg–de Vires equation. Ann. Phys. 323, 3059–3064 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gardner, C., Greene, J., Kruskal, M., Miura, R.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)CrossRefGoogle Scholar
  7. 7.
    Ablowitz, M., Segur, H.: Soliton and the Inverse Scattering Transform. SIAM, Philadelphia (1981)CrossRefGoogle Scholar
  8. 8.
    Matveev, V., Salle, M.: Darboux Transformations and Solitons. Springer, Berlin (1991)MATHGoogle Scholar
  9. 9.
    Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Suppl. Prog. Theor. Phys. 59, 64–100 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Liu, H., Li, J., Chen, F.: Exact periodic wave solutions for the hKdV equation. Nonlinear Anal. TMA 70, 2376–2381 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Olver, P.: Applications of Lie groups to differential equations. In: Halmos, P., Gehring, F., Moore, C. (eds.) Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)Google Scholar
  12. 12.
    Pucci, E., Saccomandi, G.: Potential symmetries and solutions by reduction of partial differential equations. J. Phys. A Math. Gen. 26, 681–690 (1993)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Qu, C., Huang, Q.: Symmetry reductions and exact solutions of the affine heat equation. J. Math. Anal. Appl. 346, 521–530 (2008)Google Scholar
  14. 14.
    Chaolu, T., Pang, J.: An algorithm for the complete symmetry classification of differential equations based on Wu’s method. J. Eng. Math. 66, 181–199 (2010)Google Scholar
  15. 15.
    Liu, H., Li, J., Liu, L.: Lie group classifications and exact solutions for two variable-coefficient equations. Appl. Math. Comput. 215, 2927–2935 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Liu, H., Li, J., Liu, L., Wei, Y.: Group classifications, optimal systems and exact solutions to the generalized Thomas equations. J. Math. Anal. Appl. 383, 400–408 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Liu, H., Li, J., Liu, L.: Complete group classification and exact solutions to the generalized short pulse equation. Stud. Appl. Math. 129, 103–116 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Liu, H., Geng, Y.: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J. Differ. Equ. 254, 2289–2303 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Li, J., Liu, Z.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25, 41–56 (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Liu, H., Li, J.: Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations. J. Comput. Appl. Math. 257, 144–156 (2014)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Weiss, J.: The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405–1413 (1983)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Newell, A., Tabor, M., Zeng, Y.: A unified approach to Painlevé expansions. Phys. D 29, 1–68 (1987)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Conte, R., Musette, M.: The Painlevé Handbook. Springer, Dordrecht (2008)MATHGoogle Scholar
  25. 25.
    Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the short pulse equation. Nonlinear Anal. TMA 71, 2126–2133 (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Liu, H., Li, J., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J. Comput. Appl. Math. 228, 1–9 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)CrossRefMATHGoogle Scholar
  28. 28.
    Wang, Z., Guo, D.: Introduction to special functions. In: Gao, C. (ed.) The Series of Advanced Physics of Peking University. Peking University Press, Beijing (2000) (in Chinese)Google Scholar
  29. 29.
    Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77, 253–299 (1987)MATHMathSciNetGoogle Scholar
  30. 30.
    Zakharov, V. (ed.): What is Integrability. Springer, Berlin (1991)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesLiaocheng UniversityLiaochengChina
  2. 2.Department of MathematicsBinzhou UniversityBinzhouChina
  3. 3.Department of MathematicsZhejiang Normal UniversityJinhuaChina
  4. 4.School of SciencesKunming University of Science and TechnologyKunmingChina

Personalised recommendations