Advertisement

Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 413–420 | Cite as

A simulation of the cascading failure of a complex network model by considering the characteristics of road traffic conditions

  • Yongsheng Qian
  • Bingbing Wang
  • Yuan Xue
  • Junwei Zeng
  • Neng Wang
Original Paper

Abstract

Using the dual method, we start with a traditional road traffic network with a constructed logic network with small-world characteristics and construct the complex network of road traffic. After analyzing and comparing with other complex networks, the time delay, restorative, and other characteristics are presented for the complex network of road traffic, and then, the cascading failure model of the complex network is simulated. The simulation results show that using different time delays, an incident dissipation factor and load capacity can reasonably avoid a cascading failure, and they can remove its effects. In addition, our results provide value and guidance for building a road traffic network that prevents and removes the cascading failure of a road network.

Keywords

Cascading failure Traffic network Dual model CA model 

Notes

Acknowledgments

This work is supported by the National Social Science Foundation of China (Grant Nos. 11CJY067, 14CJY052, 14XGL011) and the Humanities and Social Sciences Programming Project of the Ministry of Education, China (Grant Nos. 12YJC630200, 12YJC630100) and the Natural Science Foundation of Gansu Province, China (Grant Nos. 1208RJZA164, 1308RJYA042, 145RJZA190) and the Construction of Science and Technology Key Project in Gansu Province (Grant No. JK2013-21) and the Social Sciences planning project in Gansu Province, China (Grant No. 13YD066) and the Young Scholars Science Foundation of Lanzhou Jiao tong University (Grant No. 2012056).

References

  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A Stat. Mech. Appl. 272(1), 173–187 (1999)CrossRefGoogle Scholar
  3. 3.
    Lee, D.S., Goh, K.I., Kahng, B., Kim, D.: Sandpile avalanche dynamics on scale-free networks. Phys. A Stat. Mech. Appl. 338(1), 84–91 (2004)CrossRefGoogle Scholar
  4. 4.
    Xu, J., Wang, X.F.: Cascading failures in scale-free coupled map lattices. Phys. A Stat. Mech. Appl. 349(3), 685–692 (2005)CrossRefGoogle Scholar
  5. 5.
    Fang, X., Yang, Q., Yan, W.: Modeling and analysis of cascading failure in directed complex networks. Saf. Sci. 65, 1–9 (2014)CrossRefGoogle Scholar
  6. 6.
    Wang, Z.W., Kuang, A.W., Wang, H.J.: Calculating node importance considering cascading failure in traffic. Networks 5(1), 264–269 (2013)Google Scholar
  7. 7.
    Luo, Z.Y., Li, K.P., Ma, X., Zhou, J.: Analyzing railway accidents based on complex network and cascading failure. In: Proceedings of the 2013 international conference on electrical and information technologies for rail transportation (EITRT2013)-volume I. Springer, Berlin, pp. 513–518(2014)Google Scholar
  8. 8.
    Zio, E., Golea, L.R., Sansavini, G.: Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm. Reliab. Eng. Syst. Saf. 103, 72–83 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, X.F., Xu, J.: Cascading failures in coupled map lattices. Phys. Rev. E 70(5), 056113 (2004)Google Scholar
  10. 10.
    Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)CrossRefGoogle Scholar
  11. 11.
    Centola, D., Eguíluz, V.M., Macy, M.W.: Cascade dynamics of complex propagation. Phys. A Stat. Mech. Appl. 374(1), 449–456 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, B., Kim, B.J.: A high-robustness and low-cost model for cascading failures. Europhys. Lett. 78(4), 48001 (2007)CrossRefGoogle Scholar
  13. 13.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)CrossRefGoogle Scholar
  14. 14.
    Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Tang, T.Q., Li, J.G., Huang, H.J., Yang, X.B.: A car-following model with real-time road conditions and numerical tests. Measurement 48, 63–76 (2014)CrossRefGoogle Scholar
  16. 16.
    Tang, T.Q., Caccetta, L., Wu, Y.H., Huang, H.J., Yang, X.B.: A macro model for traffic flow on road networks with varying road conditions. J. Adv. Transp. 48(4), 304–317 (2012)Google Scholar
  17. 17.
    Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76(4), 2017–2023 (2014)Google Scholar
  18. 18.
    Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)Google Scholar
  19. 19.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. phys. 2(12), 2221–2229 (1992)Google Scholar
  20. 20.
    Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67(3), 2255–2265 (2012)CrossRefGoogle Scholar
  21. 21.
    Tang, T.Q.: A helicopter’s formation flying model in the low airspace with two telegraph poles and electrical wire. Nonlinear Dyn. 69(1–2), 399–408 (2012)CrossRefGoogle Scholar
  22. 22.
    Tang, T.Q., Huang, H.J., Shang, H.Y.: A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn. 67(1), 437–443 (2012)CrossRefGoogle Scholar
  23. 23.
    Motter, A.E., Nishikawa, T., Lai, Y.C.: Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon? Phys. Rev. E 66(6), 065103 (2002)CrossRefGoogle Scholar
  24. 24.
    Motter, A.E., de Moura, A.P.S., Lai, Y.C., Dasgupta, P.: Topology of the conceptual network of language. Phys. Rev. E 65(6), 065102 (2002)CrossRefGoogle Scholar
  25. 25.
    Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9), 098701 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yongsheng Qian
    • 1
  • Bingbing Wang
    • 1
  • Yuan Xue
    • 1
  • Junwei Zeng
    • 1
  • Neng Wang
    • 1
  1. 1.School of Traffic and TransportationLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations