Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 239–248 | Cite as

Robust adaptive synchronization of a hyperchaotic finance system

  • José A. R. Vargas
  • Emerson Grzeidak
  • Elder M. Hemerly
Original Paper


This paper presents an adaptive algorithm to synchronize a hyperchaotic finance system in the presence of unknown system parameters and bounded disturbances. Based on Lyapunov-like analysis, an adaptive scheme is proposed to make the synchronization error asymptotically null. Simulation results are provided to demonstrate the effectiveness and feasibility of the proposed synchronization method.


Synchronization Lyapunov methods Adaptive control Chaotic finance systems 


  1. 1.
    Grandmont, J.M., Malgrange, P.: Nonlinear economic dynamics. J. Econ. Theory 40, 3–12 (1986)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baumol, W.J., Quandt, R.E.: Chaos model and their implications for forecasting. East. Econ. J. XI(1), 3–15 (1985)Google Scholar
  3. 3.
    Rui-Hong, D.: On “Butterfly effect” A financial creation of financial crisis in USA. J. Lanzhou Commer. Coll. 4, 101–106 (2009)Google Scholar
  4. 4.
    Jun-Hai, M., Yu-Shu, C.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl. Math. Mech. 22(11), 1240–1251 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Jun-Hai, M., Yu-Shu, C.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Appl. Math. Mech. 22(12), 1375–1382 (2001)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Zhao, X., Li, Z., Li, S.: Synchronization of a chaotic finance system. Appl. Math. Comput. 217, 6031–6039 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67, 2171–2182 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cai, G., Hu, P., Li, Y.: Modified function lag projective synchronization of a financial hyperchaotic system. Nonlinear Dyn. 69, 1457–1464 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chai, X., Gan, Z., Shi, C.: Impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system. Math. Probl. Eng. (2013). doi: 10.1155/2013/751616
  10. 10.
    Xiao, M., Cao, J.: Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3379–3388 (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Iu, H.H., Tse, C.K.: A study of synchronization in chaotic autonomous Cuk DC/DC converters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(6), 913–918 (2000)CrossRefGoogle Scholar
  12. 12.
    Arecchi, F.T., Meucci, R., Di Garbo, A., Allaria, E.: Homoclinic chaos in a laser: synchronization and its implications in biological systems. Opt. Lasers Eng. 39(3), 293–304 (2003)CrossRefGoogle Scholar
  13. 13.
    Li, Y.N., Chen, L., Cai, Z.S., Zhao, X.Z.: Study on chaos synchronization in the Belousov–Zhabotinsky chemical system. Chaos Solitons Fractals 17(4), 699–707 (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Lu, J.N., Wu, X.Q., Lü, J.H.: Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305(6), 365–370 (2002)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Dimassi, H., Loria, A.: Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication. IEEE Trans. Circuits Syst. I Regul. Pap. 58(4), 800–812 (2011)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, L.F., An, J.G., Zhang, J.G.: A new chaos synchronization scheme and its application to secure communications. Nonlinear Dyn. 73, 705–722 (2013)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dyn. 55, 323–328 (2009)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Wang, Z.L., Shi, X.R.: Anti-synchronization of Liu system and Lorenz system with known or unknown parameters. Nonlinear Dyn. 57, 425–430 (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Wang, Z.L.: Projective synchronization of hyperchaotic Lü system and Liu system. Nonlinear Dyn. 59, 455–462 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Al-Sawada, M.M., Noorani, M.S.M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15, 1036–1047 (2010)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Yang, C.C.: Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller. Nonlinear Dyn. 63, 447–454 (2011)CrossRefGoogle Scholar
  22. 22.
    Li, X.F., Leung, A.C.S., Liu, X.J., Han, X.P., Chu, Y.D.: Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters. Nonlinear Anal. Real World Appl. 11, 2215–2223 (2010)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Ye, Z., Deng, C.: Adaptive synchronization to a general non-autonomous chaotic system and its applications. Nonlinear Anal. Real World Appl. 13, 840–849 (2012)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Mahmoud, E.E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Comput. Model. 55, 1951–1962 (2012)Google Scholar
  25. 25.
    Njah, A.N., Sunday, O.D.: Generalized on the chaos control of 4-D chaotic system using recursive backstepping nonlinear controller. Chaos Solitons Fractals 41, 2371–2376 (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Peng, C.C., Chen, C.L.: Robust chaotic control of Lorenz system by backstepping design. Chaos Solitons Fractals 37, 598–608 (2008)CrossRefMATHGoogle Scholar
  27. 27.
    Liu, L., Han, Z., Li, W.: Global sliding mode control and application in chaotic systems. Nonlinear Dyn. 56, 193–198 (2009)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Chen, C.-L., Yau, H.-T., Peng, C.C.: Design of extended backstepping sliding mode controller for uncertain chaotic systems. Int. J. Nonlinear Sci. Numer. Simul. 8, 137–145 (2007)Google Scholar
  29. 29.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Dover Publications, New York (2012)Google Scholar
  30. 30.
    Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)MATHGoogle Scholar
  31. 31.
    Vargas, J.A.R., Hemerly, E.M.: Neural adaptive observer with asymptotic convergence in the presence of time-varying parameters and disturbances (in Portuguese). Sba Controle Autom. [online] 19(1), 18–29 (2008). doi: 10.1590/S0103-17592008000100002
  32. 32.
    Wei, J., Zhao, D., Liang, L.: Estimating the growth models of news stories on disasters. J. Am. Soc. Inf. Sci. Technol. 60(9), 1741–1755 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • José A. R. Vargas
    • 1
  • Emerson Grzeidak
    • 2
  • Elder M. Hemerly
    • 3
  1. 1.Departamento de Engenharia ElétricaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Departamento de Referências Operacionais e Riscos CorporativosBanco Central do BrasilBrasíliaBrazil
  3. 3.Divisão de Engenharia EletrônicaInstituto Tecnológico de AeronáuticaSão PauloBrazil

Personalised recommendations