Advertisement

Nonlinear Dynamics

, Volume 79, Issue 3, pp 2121–2131 | Cite as

A fast image encryption algorithm based on chaotic map and lookup table

  • Pingguang Cheng
  • Huaqian Yang
  • Pengcheng Wei
  • Wei Zhang
Original Paper

Abstract

At present, a lot of image cryptosystems with permutation/diffusion architecture have been proposed. However, permutation and diffusion are considered as two separate stages, both requiring image-scanning to obtain pixel values. Moreover, because of extraction bits directly from the discrete state value of a chaotic map to generate the pseudorandom binary sequence, the quite time-consuming conversion from floating points to integers cannot be avoided in practical applications. In this paper, a novel image encryption scheme for both combining permutation–diffusion and avoiding conversion of floating-point number is proposed. Firstly, using the lookup table constructed and S-Box of AES, an efficient approach of generating the pseudorandom sequence required by diffusion is proposed. Then, the combined permutation/diffusion architecture is employed to shuffle and change the pixels. Theoretical analyses and computer simulations both confirm that the new algorithm has high security and is very fast for practical image encryption.

Keywords

Image encryption Cryptography Information security Chaotic map 

Notes

Acknowledgments

Our sincere thanks go to the anonymous reviewers for their valuable comments. The work described in this paper was supported by the grants from the National Natural Science Foundation of China (No. 61003256), the Postdoctoral Science Foundation of China (2011M501391, 20110490082), the Natural Science Foundation of CQ CSTC (No. 2010BB2279) and the Program for excellent talents in Chongqing.

References

  1. 1.
    Pisarchik, A.N., Zanin, M.: Image encryption with chaotically coupled chaotic maps. Phys. D 237, 2638–2648 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(6), 1259–1284 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of the chaotic standard map. Chaos Solitons Fractals 26, 117–129 (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Wong, K.W., Kwok, B.S., Law, W.S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372, 2645–2652 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Wang, Y., Wong, K.-W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11, 514–522 (2011)CrossRefGoogle Scholar
  6. 6.
    Yang, H., Wong, K.-W., Liao, X., Zhang, W., Wei, P.: A fast image encryption and authentication scheme based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 15, 3507–3517 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Wang, Y., Liao, X., Xiao, D., Wong, K.-W.: One-way hash function construction based on 2D coupled map lattices. Inf. Sci. 178, 1391–1406 (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Li, D., Hu, G.: A keyed hash function based on the modified coupled chaotic map lattice. Commun. Nonlinear Sci. Numer. Simul. 17, 2579–2587 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Yuen, C.-H., Wong, K.-W.: A chaos-based joint image compression and encryption scheme using DCT and SHA-1. Appl. Soft Comput. 11, 5092–5098 (2011)CrossRefGoogle Scholar
  11. 11.
    Mohammad Seyedzadeh, S., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Process. 92, 1202–1215 (2012)CrossRefGoogle Scholar
  12. 12.
    Pisarchik, A.N., Zanin, M.: Image encryption with chaotically coupled chaoticmaps. Phys. D 237, 2638–2648 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Xiang, T., Wong, K.W., Liao, X.: Selective image encryption using a spatiotemporal chaotic system. Chaos 17, 0231151–02311512 (2007)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 70, 1589–1592 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Liu, N., Guo, D., Parr, G.: Complexity of chaotic binary sequence and precision of its numerical simulation. Nonlinear Dyn. 67, 549–556 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wei, J., Liao, X., Wong, K.W., Zhou, T.: Cryptanalysis of a cryptosystem using multiple one-dimensional chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 12, 814–822 (2007)CrossRefMATHGoogle Scholar
  17. 17.
    Wang, K., Pei, W., Zou, L., Song, A., He, Z.: On the security of 3D cat map based symmetric image encryption scheme. Phys. Lett. A 343, 432–439 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Deng, S., Li, Y., Xiao, D.: Analysis and improvement of a chaos-based hash function construction. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1338–1347 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Wang, S., Shan, P.: Security analysis of a one-way hash function based on spatiotemporal chaos. Chin. Phys. B 20, 090504–090507 (2011)CrossRefGoogle Scholar
  20. 20.
    Kanso, A., Smaoui, N.: Irregularly decimated chaotic map(s) for binary digits generations. Int. J. Bifurcat. Chaos 19(4), 1169–1183 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Zhang, Y., Xiao, D., Wen, W., Nan, H.: Cryptanalysis of image scrambling based on chaotic sequences and Vigenère cipher. Nonlinear Dyn. (2014). doi: 10.1007/s11071-014-1435-9
  22. 22.
    Zhang, Y., Xiao, D.: Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn. 72(4), 751–756 (2013)Google Scholar
  23. 23.
    Yi, X., Tan, C.H., Siew, C.K.: A new block cipher based on chaotic tent maps. IEEE Trans. Circuits Syst. I 49(12), 1826–1829 (2002)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I 48(2), 163–169 (2001)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part I: analysis. IEEE Trans. Circuits Syst. I 48(3), 281–288 (2001)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part II: practical realization. IEEE Trans. Circuits Syst. I 48(3), 382–385 (2001)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    NIST Special Publication 800–22rev1a. http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pingguang Cheng
    • 1
  • Huaqian Yang
    • 1
    • 2
  • Pengcheng Wei
    • 1
  • Wei Zhang
    • 1
  1. 1.Department of Mathematics and Info EngineeringChongqing University of EducationChongqingChina
  2. 2.College of Computer Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations