Skip to main content
Log in

Coexistence of attractors and effects of noise on coupled piecewise maps

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The synchronization transition in coupled piecewise map lattices is studied. The average order parameter is calculated to diagnose synchronization of coupled piecewise maps. As a result, it shows that coexistence of a period cluster and synchronization states in the synchronization transition process. A detailed research shows that the period clusters consist of two coexisting period attractors, and their period orbit is an unstable periodic orbit of the isolate map. The unstable periodic orbit is stabilized again by the mutual interactions of the local nonlinearity and the spatial coupling. The influence of noise on the complete synchronization (CS) in coupled piecewise map systems is also studied in this work. Synchronization probability densities and average order parameters as a function of the coupling strength with various noise intensities are calculated. When the noise intensity is small, the noise can postpone synchronization transition processes. However, if the noise intensity is larger, the noise can destroy the period clusters states, shorten the synchronization transition and enhance the CS in coupled piecewise maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaneko, K.: Theory and Applications of Coupled Map Lattices. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Sonawane, A.R.: Directed percolation criticality due to stochastic switching between attractive and repulsive coupling in coupled circle maps. Phys. Rev. E 81, 056206 (2010). doi:10.1103/PhysRevE.81.05620

    Article  Google Scholar 

  3. Qu, Z.L., Hu, G.: Spatiotemporally periodic states, periodic windows, and intermittency in coupled-map lattices. Phys. Rev. E 49, 1099–1108 (1994). doi:10.1103/PhysRevE.49.1099

    Article  Google Scholar 

  4. Kaneko, K.: Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermettency. Phys. D 34, 1–41 (1989). doi:10.1016/0167-2789(89)90227-3

    Article  MATH  MathSciNet  Google Scholar 

  5. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990). doi:10.1103/PhysRevLett.64.821

    Article  MATH  MathSciNet  Google Scholar 

  6. Brown, R., Rulkov, N.F.: Designing a coupling that guarantees synchronization between identical chaotic systems. Phys. Rev. Lett. 78, 4189–4192 (1997). doi:10.1103/PhysRevLett.78.4189

    Article  Google Scholar 

  7. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A 44, 2374–2383 (1991). doi:10.1103/PhysRevA.44.2374

    Article  Google Scholar 

  8. Maistrenko, Y., Kapitaniak, T.: Different types of chaos synchronization in two coupled piecewise linear maps. Phys. Rev. E 54, 3285–3292 (1996). doi:10.1103/PhysRevE.54.3285

    Article  Google Scholar 

  9. Kapitaniak, T.: Synchronization of chaos using continuous control. Phys. Rev. E 50, 1642–1644 (1994). doi:10.1103/PhysRevE.50.1642

    Article  Google Scholar 

  10. Pring, S., Budd, C.: The dynamics of regularized discontinuous maps with applications to impacting systems. SIAM J. Appl. Dyn. Syst. 9, 188–219 (2010). doi:10.1137/080743123

    Article  MATH  MathSciNet  Google Scholar 

  11. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, Piotr: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)

    Google Scholar 

  12. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998). doi:10.1103/PhysRevLett.80.2109

    Article  Google Scholar 

  13. Huang, L., Chen, Q., Lai, Y.C., Pecora, L.M.: Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80, 036204 (2009). doi:10.1103/PhysRevE.80.036204

    Article  Google Scholar 

  14. Huang, L., Lai, Y.C., Park, K., Wang, X., Lai, C., Gatenby, R.: Synchronization in complex clustered networks. Front. Phys. 2, 446–459 (2007). doi:10.1007/s11467-007-0056-x

    Article  Google Scholar 

  15. Yang, J., Hu, G., Xiao, J.: Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents. Phys. Rev. Lett. 80, 496–499 (1998). doi:10.1103/PhysRevLett.80.496

    Article  Google Scholar 

  16. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440 (1998). doi:10.1038/30918

    Article  Google Scholar 

  17. Barabsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999). doi:10.1126/science.286.5439.509

    Article  MathSciNet  Google Scholar 

  18. Loskutov, A.Y.: Dynamics control of chaotic systems by parametric destochastization. J. Phys. A Math. Gen. 26, 4581–4594 (1993). doi:10.1088/0305-4470/26/18/023

    Article  MATH  MathSciNet  Google Scholar 

  19. Lamba, H., Budd, C.J.: Scaling of Lyapunov exponents at nonsmooth bifurcations. Phys. Rev. E 50, 84–90 (1994). doi:10.1103/PhysRevE.50.84

    Article  MathSciNet  Google Scholar 

  20. Wang, J., Ding, X.L., Hu, B., Wang, B.H., Mao, J.S., He, D.R.: Characteristics of a piecewise smooth area-preserving map. Phys. Rev. E 64(026), 202 (2001). doi:10.1103/PhysRevE.64.026202

    MathSciNet  Google Scholar 

  21. Zhusubaliyev, Z.T., Mosekilde, E.: Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore (2003)

    Google Scholar 

  22. Ren, H.P., Liu, D.: Bifurcation behaviours of peak current controlled PFC boost converter. Chin. Phys. 14, 1352 (2005). doi:10.1088/1009-1963/14/7/015

    Article  Google Scholar 

  23. Qu, S.X., Wu, S., He, D.R.: Multiple devil’s staircase and type-v intermittency. Phys. Rev. E 57, 402–411 (1998). doi:10.1103/PhysRevE.57.402

    Article  MathSciNet  Google Scholar 

  24. Qu, S.X., Wu, S., He, D.R.: A multiple devil’s staircase in a discontinuous map. Phys. Lett. A 231, 152–158 (1997). doi:10.1016/S0375-9601(97)00300-9

    Article  MATH  MathSciNet  Google Scholar 

  25. Polynikis, A., di Bernardo, M., Hogan, S.J.: Synchronizability of coupled PWL maps. Chaos Solitons Fractals 41, 1353 (2009). doi:10.1016/j.chaos.2008.04.062

    Article  MATH  MathSciNet  Google Scholar 

  26. Cencini, M., Torcini, A.: Nonlinearly driven transverse synchronization in coupled chaotic systems. Phys. D 205, 191 (2005). doi:10.1016/j.physd.2005.06.017

    Article  MathSciNet  Google Scholar 

  27. Cao, J., Li, P., Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353, 318–325 (2006). doi:10.1016/j.physleta.2005.12.092

    Article  Google Scholar 

  28. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996). doi:10.1103/PhysRevLett.76.1804

    Article  Google Scholar 

  29. Belykh, V.N., Osipov, G.V., Petrov, V.S., Suykens, J.A.K., Vandewalle, J.: Cluster synchronization in oscillatory networks. Chaos 18, 037106 (2008). doi:10.1063/1.2956986

    Article  MathSciNet  Google Scholar 

  30. Ma, Z., Zhang, G., Wang, Y., Liu, Z.: Cluster synchronization in star-like complex networks. J. Phys. A Math. Gen. 41, 155101 (2008). doi:10.1088/1751-8113/41/15/155101

    Article  MathSciNet  Google Scholar 

  31. Wang, K., Fu, X., Li, K.: Cluster synchronization in community networks with nonidentical nodes. Chaos 19, 023106 (2009). doi:10.1063/1.3125714

    Article  MathSciNet  Google Scholar 

  32. Zhang, L., An, X., Zhang, J.: A new chaos synchronization scheme and its application to secure communications. Nonlinear Dyn. 73, 705–722 (2013). doi:10.1007/s11071-013-0824-9

    Article  MATH  MathSciNet  Google Scholar 

  33. Mengue, A., Essimbi, B.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70, 1241–1253 (2012). doi:10.1007/s11071-012-0528-6

    Article  MathSciNet  Google Scholar 

  34. Wang, G., Jin, W., Hu, C.: The complete synchronization of morris-lecar neurons influenced by noise. Nonlinear Dyn. 73, 1715–1719 (2013). doi:10.1007/s11071-013-0897-5

    Article  MathSciNet  Google Scholar 

  35. Kaneko, K.: Chaotic but regular posi–nega switch among coded attractors by cluster-size variation. Phys. Rev. Lett. 63, 219–223 (1989). doi:10.1103/PhysRevLett.63.219

    Article  MathSciNet  Google Scholar 

  36. Crisanti, A., Falcioni, M., Vulpiani, A.: Broken ergodicity and glassy behavior in a deterministic chaotic map. Phys. Rev. Lett. 76, 612–615 (1996). doi:10.1103/PhysRevLett.76.612

    Article  Google Scholar 

  37. Popovych, O., Maistrenko, Y., Mosekilde, E., Pikovsky, A., Kurths, J.: Transcritical riddling in a system of coupled maps. Phys. Rev. E 63, 036201 (2001). doi:10.1103/PhysRevE.63.036201

    Article  Google Scholar 

  38. Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems case of a phase transition in oscillator communities. J. Stat. Phys. 49, 569 (1987). doi:10.1007/BF01009349

    Article  MATH  MathSciNet  Google Scholar 

  39. He, D.R., Bauer, M., Habip, S., Krueger, U., Martienssen, W., Christiansen, B., Wang, B.H.: Type V intermittency. Phys. Lett. A 171, 61–65 (1992). doi:10.1016/0375-9601(92)90133-7

    Article  Google Scholar 

  40. Qu, S.X., Lu, Y.Z., Zhang, L., He, D.R.: Discontinuous bifurcation and coexistence of attractors in a piecewise linear map with a gap. Chin. Phys. B 17, 4418 (2008). doi:10.1088/1674-1056/17/12/014

    Article  Google Scholar 

  41. Wang, C.J., Yang, K.L., Qu, S.X.: Noise destroys the coexistence of periodic orbits of a piecewise linear map. Chin. Phys. B 22, 030502–1 (2013). doi:10.1088/1674-1056/22/3/030502

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.11205006), the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 12JK0962), and the Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (Grant No. 2014KJXX-77).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, KL., Wang, CJ. Coexistence of attractors and effects of noise on coupled piecewise maps. Nonlinear Dyn 79, 377–385 (2015). https://doi.org/10.1007/s11071-014-1671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1671-z

Keywords

Navigation