Advertisement

Nonlinear Dynamics

, Volume 79, Issue 1, pp 47–61 | Cite as

Finite-time global synchronization for a class of Markovian jump complex networks with partially unknown transition rates under feedback control

  • Xin Wang
  • Jian-an Fang
  • Huanyu Mao
  • Anding Dai
Original Paper

Abstract

This paper presents a framework for finite-time global synchronization of Markovian jump complex networks (MJCNs) with partially unknown transition rates, time-delays and stochastic noises. Several criteria for finite-time global synchronization are given by using the stochastic analysis techniques and matrix theory. These criteria provide a feasible approach to design linear feedback controller and to compute finite-time of global synchronization for the addressed MJCNs. Four numerical examples are given to demonstrate the effectiveness of the theoretical results.

Keywords

Finite-time global synchronization Complex network  Markovian jump Feedback control Stochastic noises 

Notes

Acknowledgments

The work is supported by the Education Commission Scientific Research Innovation Key Project of Shanghai under Grant 13ZZ050, the Science and Technology Commission Innovation Plan Basic Research Key Project of Shanghai under Grant 12JC1400400, Education Department Scientific Project of Zhejiang Province under Grant Y201326804, and the Scientific and Technological Innovation Plan Projects of Ningbo City under Grant 2012B71011 and 2011B710038.

References

  1. 1.
    Tang, Y., Wong, W.K.: Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 435–447 (2013)CrossRefGoogle Scholar
  2. 2.
    Tang, Y., Wang, Z., Wong, W.K., Kurths, J., Fang, J.A.: Multiobjective synchronization of coupled systems. Chaos 21(2), 025114 (2011)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Zhang, W.B., Tang, Y., Miao, Q.Y., Du, W.: Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects. IEEE Trans. Neural Netw. Learn. Syst. 24(8), 1316–1326 (2013)CrossRefGoogle Scholar
  4. 4.
    Tang, Y., Gao, H.J., Lu, J.Q., Kurths, J.: Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach. IEEE Trans. Neural Netw. Learn. Syst. (2013, in press). doi:  10.1109/TNNLS.2013.2295966
  5. 5.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Tang, Y., Gao, H.J., Zou, W., Kurths, J.: Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybern. 43(1), 358–370 (2013)CrossRefGoogle Scholar
  7. 7.
    Zuo, Z.Q., Yang, C.L., Wang, Y.J.: A unified framework of exponential synchronization for complex networks with time-varying delays. Phys. Lett. A 374(19–20), 1989–1999 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Shen, H., Park, J.H., Wu, Z.G.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. (2014, in press). doi:  10.1007/s11071-014-1412-3
  9. 9.
    Li, X.L., Cao, J.D.: Adaptive synchronization for delayed neural networks with stochastic perturbation. J. Franklin Inst. 345(7), 779–791 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Li, Z., Chen, G.R.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II: Exp. Briefs 53(1), 28–33 (2006)Google Scholar
  11. 11.
    Wang, Z.D., Wang, Y., Liu, Y.R.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Neural Netw. 21(1), 11–25 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Wang, Z.D., Liang, J.L.: A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances. Phys. Lett. A 372(39), 6066–6073 (2008)CrossRefMATHGoogle Scholar
  13. 13.
    Pan, H., Nian, X.H., Gui, W.: Synchronization in dynamic networks with time-varying delay coupling based on linear feedback controllers. Acta Automatica Sinica 36(12), 1766–1772 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Lu, R.Q., Xu, Y., Xue, A.K., Zheng, J.Q.: Networked control with state reset and quantized measurements: observer-based case. IEEE Trans. Ind. Electron. 60(11), 5206–5213 (2013)CrossRefGoogle Scholar
  15. 15.
    Lu, R.Q., Wu, F., Xue, A.K.: Networked control with reset quantized state based on bernoulli processing. IEEE Trans. Ind. Electron. 61(9), 4838–4846 (2014)CrossRefGoogle Scholar
  16. 16.
    Shen, H., Song, X.N., Wang, Z.: Robust fault-tolerant control of uncertain fractional-order systems against actuator faults. IET Control Theory Appl. 7(9), 1233–1241 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Wu, W., Zhou, W.J., Chen, T.P.: Cluster synchronization of linearly coupling complex networks under pinning control. IEEE Trans. Circuits Syst. I Regul. Pap. 56(4), 829–839 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rafikov, M., Balthazarb, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 13(7), 1175–1192 (2008)CrossRefGoogle Scholar
  19. 19.
    Wang, F.Q., Liu, C.X.: A new criterion for chaos and hyperchaos synchronization using linear feedback control. Phys. A 360(2), 274–278 (2006)CrossRefMATHGoogle Scholar
  20. 20.
    Shen, H., Huang, X., Zhou, J.P., Wang, Z.: Global exponential estimates for uncertain Markovian jump neural networks with reaction-diffusion terms. Nonlinear Dyn. 69(1–2), 473–486 (2012)Google Scholar
  21. 21.
    Wu, Z.G., Shi, P., Su, H.Y., Chu, J.: Asynchronous \(l_{2}-l_{\infty }\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50, 180–186 (2014)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Shen, H., Park, J.H., Zhang, L.X., Wu, Z.G.: Robust extended dissipative control for sampled-data Markov jump systems. Int. J. Control 87(8), 1549–1564 (2014)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Shen, H., Xu, S.Y., Lu, J.W., Zhou, J.P.: Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays. J. Franklin Inst. 349(5), 1665–1680 (2012)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Yang, X.S., Cao, J.D., Lu, J.Q.: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans. Circuits Syst. I Regul. Pap. 60(2), 363–376 (2013)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhang, L.X., Boukas, E.K.: Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45, 463–468 (2009)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Sheng, L., Gao, M.: Stabilization for Markovian jump nonlinear systems with partly unknown transition probabilities via fuzzy control. Fuzzy Set. Syst. 161, 2780–2792 (2010) Google Scholar
  27. 27.
    Ma, Q., Xu, S.Y., Zou, Y.: Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities. Neurocomputing 74, 3404–3411 (2011)CrossRefGoogle Scholar
  28. 28.
    Tian, E.G., Yue, D., Wei, G.L.: Robust control for Markovian jump systems with partially known transition probabilities and nonlinearities. J. Franklin Inst. 350, 2069–2083 (2013)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Du, H.Y., Shi, P., Lü, N.: Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal. Real World Appl. 14(2), 1182–1190 (2013)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Sun, Y.Z., Li, W., Ruan, J.: Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation. Commun. Nonlinear Sci. Numer. Simul. 18(4), 989–998 (2013)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Mei, J., Jiang, M.H., Xu, W.M., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18, 2462–2478 (2013)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Khoo, S.Y., Yin, J.L., Man, Z.H., Yu, X.H.: Finite-time stabilization of stochastic nonlinear systems in strict-feedback form. Automatica 49, 1403–1410 (2013)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Yin, J.L., Khoo, S.Y., Man, Z.H., Yu, X.H.: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47, 2671–2677 (2011)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Yang, X.S., Cao, J.D.: Finite-time stochastic synchronization of complex networks. Appl. Math. Modell. 34, 3631–3641 (2010)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Huang, X.Q., Lin, W., Yang, B.: Global finite-time synchronization of a class of uncertain nonlinear systems. Automatica 41, 881–888 (2005)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Cui, W.X., Sun, S.Y., Fang, J.A., Xu, Y.L., Zhao, L.D.: Finite-time synchronization of Markovian jump complex networks with partially unknown transition rates. J. Franklin Inst. 351, 2543–2561 (2014)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55, 950–955 (2010)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Sun, Y.Z., Li, W., Zhao, D.H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22, 023152 (2012)CrossRefGoogle Scholar
  39. 39.
    Vincent, U.E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375, 2322–2326 (2011)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAMJ. Control Optim. 38, 751–766 (2000)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)CrossRefMATHGoogle Scholar
  42. 42.
    Mao, X.R., Yuan, C.G.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xin Wang
    • 1
    • 2
  • Jian-an Fang
    • 1
  • Huanyu Mao
    • 2
  • Anding Dai
    • 3
  1. 1.College of Information Science and TechnologyDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.School of Information EngineeringZhejiang Textile and Fashion CollegeNingboPeople’s Republic of China
  3. 3.School of Mathematics and Computer ScienceHunan City UniversityYiyangPeople’s Republic of China

Personalised recommendations