Nonlinear Dynamics

, Volume 78, Issue 4, pp 2795–2810 | Cite as

Evolutionary algorithm-based PID controller tuning for nonlinear quarter-car electrohydraulic vehicle suspensions

  • Muhammed Dangor
  • Olurotimi A. Dahunsi
  • Jimoh O. Pedro
  • M. Montaz Ali
Original Paper


The basic challenge associated with the design of vehicle suspension system is the attainment of an optimal trade-off between the various design objectives. This study presents the design of proportional-integral-derivative (PID) controller for a quarter-car active vehicle suspension system (AVSS) using evolutionary algorithms (EA) such as the particle swarm optimization (PSO), genetic algorithm (GA) and differential evolution (DE). Each of the EA-based PID controllers showed overall improvement in suspension travel, ride comfort, settling time and road holding from the manually tuned controller and the passive vehicle suspension system. These improvements were, however, achieved at the cost of increased actuator force, power consumption and spool-valve displacement. DE-optimized PID control resulted in the best minimized suspension performance, followed by the GA and PSO, respectively. Frequency-domain analysis showed that all the signals were attenuated within the whole body vibration frequency range and the EA-optimized controllers had RMS frequency weighted body acceleration of the vehicle within allowable limits for vibration exposure. Robustness analysis of the DE-optimized PID-controlled AVSS to model uncertainties is carried out in the form of variation in vehicle sprung mass loading, tyre stiffness and speed.


Force feedback PID control Active vehicle suspension system Genetic algorithm Particle swarm optimization Differential evolution 


  1. 1.
    Pedro, J.O., Dahunsi, O.A.: Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system. Int. J. Appl. Math. Comput. Sci. AMCS 21(1), 137–147 (2011)MATHMathSciNetGoogle Scholar
  2. 2.
    Hrovat, D.: Survey of advanced suspension developments and related optimal control applications. Automatica 33(10), 1781–1817 (1997)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Fateh, M.M., Zirkohi, M.M.: Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation. Veh. Syst. Dyn. 49(12), 1951–1965 (2011)CrossRefGoogle Scholar
  4. 4.
    Yagiz, N., Sakman, L.E.: Robust sliding mode control of a full vehicle without suspension gap loss. J. Vib. Control 11(11), 1357–1374 (2005)MATHCrossRefGoogle Scholar
  5. 5.
    Cao, D., Song, X., Ahmadian, M.: Editor’s perspectives: road vehicle suspension design, dynamics and control. Veh. Syst. Dyn. 49(1–2), 3–28 (2011)CrossRefGoogle Scholar
  6. 6.
    Cao, J., Liu, H., Li, P., Brown, D.: State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Trans. Intell. Transp. Syst. 9(3), 392–405 (2008)CrossRefGoogle Scholar
  7. 7.
    Xue, X.D., Cheng, K.W.E., Zhang, Z., Lin, J.K., Wang, D.H., Bao, Y.J., Wong, M.K., Cheung, N.: Study of art of automotive active suspensions. In: proceedings of the 4th international conference on power electronics systems and applications (PESA), pp. 1–6. Hong Kong, China (2011)Google Scholar
  8. 8.
    He, Y., McPhee, J.: Application of optimisation algorithms and multibody dynamics to ground vehicle suspension design. Int. J. Heavy Veh. Syst. 14(2), 158–192 (2007)CrossRefGoogle Scholar
  9. 9.
    Wang, J., Xu, W., Chen, W.: Optimal hankel-norm reduction of active suspension model with application in suspension multiobjective control. Int. J. Veh. Des. 40(1–3), 175–195 (2006)CrossRefGoogle Scholar
  10. 10.
    Du, H., Zhang, N.: \({h_\infty }\) control of active vehicle suspensions with actuator time delay. J. Sound Vib. 301(1–2), 236–252 (2007)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hassanzadeh, I., Alizadeh, G., Shirjoposht, N.P., Hashemzadeh, F.: A new optimal nonlinear approach to half car active suspension control. IACSIT Int J. Eng. Technol. 2(1), 78–84 (2010)CrossRefGoogle Scholar
  12. 12.
    Jin, Y., Luo, X.: Stochastic optimal active control of a half-car nonlinear suspension under random road excitation. Nonlinear Dyn. 72(1–2), 185–195 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chantranuwathana, S., Peng, H.: Adaptive robust force control for vehicle active suspensions. Int. J. Adapt. Control Signal Process. 18(2), 83–102 (2004)CrossRefGoogle Scholar
  14. 14.
    Feng, J.Z., Li, J., Yu, F.: Ga-based pid and fuzzy logic control for active vehicle suspension system. Int. J. Automot. Technol. 4(4), 181–191 (2003)Google Scholar
  15. 15.
    Du, H., Zhang, N.: Static output feedback control for electrohydraulic active suspensions via t-s fuzzy model approach. J. Dyn. Syst. Meas. Control Trans. ASME 131(5), 051004-1–051004-11 (2009)CrossRefGoogle Scholar
  16. 16.
    Nusantoro, G.D., Priyandoko, G.: Pid state feedback controller of a quarter car active suspension system. J. Basic Appl. Sci. Res. 1(11), 2304–2309 (2011)Google Scholar
  17. 17.
    Sun, W., Gao, H., Kaynak, O.: Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME Trans. Mechatron. 18(3), 1072–1079 (2013)CrossRefGoogle Scholar
  18. 18.
    Huang, C.-J., Li, T.-H.S., Chen, C.-C.: Fuzzy feedback linearization control for mimo nonlinear system and its application to full-vehicle suspension system. Circuits Syst. Signal Process. 28(6), 959–991 (2009)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Chien, T.L., Chen, C.C., Tsai, M.C., Chen, Y.C.: Almost disturbance decoupling and tracking control for multi-input multi-output non-linear uncertain systems: application to a half-car active suspension system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(2), 215–227 (2009)CrossRefGoogle Scholar
  20. 20.
    Kaynak, O., Erbatur, K., Ertugrul, M.: The fusion of computationally intelligent methodologies and sliding-mode control—a survey. IEEE Trans. Industr. Electron. 48(1), 4–21 (2001)CrossRefGoogle Scholar
  21. 21.
    Huang, S.J., Lin, W.C.: A neural network based sliding mode controller for active vehicle suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 211(11), 1381–1397 (2002)Google Scholar
  22. 22.
    Koshkouei, A.J., Burnham, K.J.: Sliding mode controllers for active suspensions. Proceedings of the 17th world congress. In: proceedings of the international federation of automatic control (IFAC), pp. 3416–3421. Seoul, Korea (2008)Google Scholar
  23. 23.
    Goncalves, E.N., Palhares, R.M., Takahashi, R.H.C.: A novel approach for \(h_{2}/h_{\infty }\) robust pid synthesis for uncertain systems. J. Process Control 18(1), 19–26 (2008)CrossRefGoogle Scholar
  24. 24.
    Ang, K.H., Chong, G., Li, Y.: Pid control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)CrossRefGoogle Scholar
  25. 25.
    O’Dwyer, A.: Handbook of PI and PID controller tuning rules. Imperial College Press, London (2006)CrossRefGoogle Scholar
  26. 26.
    Ekoru, J., Pedro, J.O.: Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems. J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 14(6), 401–416 (2013)CrossRefGoogle Scholar
  27. 27.
    Dahunsi, O.A., Pedro, J.O., Nyandoro, O.T.: System identification and neural network based pid control of servo-hydraulic vehicle suspension systems. Trans. S. Afr. Inst. Elec. Eng. SAIEE Afr. Res. J. ARJ 101(3), 93–105 (2010)Google Scholar
  28. 28.
    Kaddissi, C., Saad, M., Kenne, J.P.: Interlaced backstepping and integrator forwarding for nonlinear control of an electrohydraulic active suspension. J. Vib. Control 15(1), 101–131 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cetin, S., Akkaya, A.V.: Simulation and hybrid fuzzy-pid control for positioning of a hydraulic system. Nonlinear Dyn. 61(3), 465–476 (2010)MATHCrossRefGoogle Scholar
  30. 30.
    Demir, O., Keskin, I., Cetin, S.: Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn. 67(3), 2139–2151 (2012)CrossRefGoogle Scholar
  31. 31.
    Chiou, J.-S., Tsai, S.-H., Liu, M.-T.: A pso-based adaptive fuzzy pid-controllers. Simul. Model. Pract. Theory 26(8), 49–59 (2012)CrossRefGoogle Scholar
  32. 32.
    Mohan, B.M., Sinha, A.: Analytical structure and stability analysis of a fuzzy pid controller. Appl. Soft Comput. 8(1), 749–758 (2008)CrossRefGoogle Scholar
  33. 33.
    Wang, Y.H., Shih, M.C.: Design of a genetic-algorithm-based self-tuning sliding fuzzy controller for an active suspension system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225(3), 367–383 (2011)CrossRefGoogle Scholar
  34. 34.
    Montazeri-GH, M., Soleymani, M.: Genetic optimization of a fuzzy active suspension system based on human sensitivity to the transmitted vibrations. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 222(10), 1769–1780 (2008)CrossRefGoogle Scholar
  35. 35.
    Iruthayarajan, M.W., Baskar, S.: Evolutionary algorithms based design of multivariable pid controller. Expert Syst. Appl. 36(5), 9159–9167 (2009)CrossRefGoogle Scholar
  36. 36.
    Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10, 1223–1241 (2002)CrossRefGoogle Scholar
  37. 37.
    Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)CrossRefGoogle Scholar
  38. 38.
    Alfi, A., Fateh, M.M.: Identification of nonlinear systems using modified particle swarm optimisation: a hydraulic suspension system. Veh. Sys. Dyn. 49(6), 871–887 (2011)CrossRefGoogle Scholar
  39. 39.
    Pedro, J., Dangor, M., Dahunsi, O.A., Ali, M.M.: (2013) Differential evolution-based PID control of nonlinear full-car electrohydraulic suspensions. Math. Prob. Eng. 2013(261582), 1–13 (2013)CrossRefGoogle Scholar
  40. 40.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: proceedings of the IEEE international conference on evolutionary computation, pp. 69–73, Anchorage, Alaska, USA (1998)Google Scholar
  41. 41.
    Zhan, Z.H., Zhang, J., Li, Y., Chung, H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  42. 42.
    Wai, R.-J., Lee, J.-D., Chuang, K.-L.: Real-time pid control strategy for maglev transportation system via particle swarm optimization. IEEE Trans. Industr. Electron. 58(2), 629–646 (2011)CrossRefGoogle Scholar
  43. 43.
    Kaelo, P., Ali, M.M.: Differential evolution algorithms using hybrid mutation. Comput. Optim. Appl. 37, 231–246 (2007)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Ali, M.M.: Differential evolution with generalized differentials. J. Comput. Appl. Math. 235(8), 2205–2216 (2011)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Gaspar, P., Szaszi, I., Bokor, J.: Active suspension design using linear parameter varying control. Int. J. Auton. Syst. IJVAS 1(2), 206–221 (2003)CrossRefGoogle Scholar
  46. 46.
    Gysen, B.L.J., Paulides, J.J.H., Janssen, J.L.G., Lomonova, E.A.: Active electromagnetic suspension system for improved vehicle dynamics. IEEE Trans. Veh. Technol. 59(3), 1156–1163 (2010)CrossRefGoogle Scholar
  47. 47.
    Griffin, M.J.: Discomfort from feeling vehicle vibration. Veh. Syst. Dyn. 45(7–8), 679–698 (2007)CrossRefGoogle Scholar
  48. 48.
    European commission: Directive 2002/44/EC of the European parliament and the council of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risk arising from physical agents (vibration). Official Journal of the European Communities, Luxembourg (2002) Google Scholar
  49. 49.
    ISO 2631: Mechanical vibration and shock—evaluation of human exposure to whole-body vibration—Part 1: General requirements. International organization for standardization, Geneva, Switzerland (2003)Google Scholar
  50. 50.
    Crews, J.H., Mattson, M.G., Buckner, G.D.: Multi-objective control optimization for semi-active vehicle suspensions. J. Sound Vib. 330(23), 5502–5516 (2011)CrossRefGoogle Scholar
  51. 51.
    Kennedy, J., Eberhart, R.C.: The particle swarm: social adaptation in information-processing systems. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 379–387. McGraw-Hill, Cambridge (1999)Google Scholar
  52. 52.
    Ali, M.M., Torn, A.: Population set-based global optimization algorithms: some modifications and numerical studies. Comput. Optim. Appl. 31(10), 1703–1725 (2004)MATHMathSciNetGoogle Scholar
  53. 53.
    Zuo, L., Nayfeh, S.A.: Low order continuous-time filters for approximation of the iso 2631–1 human vibration sensitivity weightings. J. Sound Vib. 265(2), 459–465 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Muhammed Dangor
    • 1
  • Olurotimi A. Dahunsi
    • 1
  • Jimoh O. Pedro
    • 1
  • M. Montaz Ali
    • 2
  1. 1.School of Mechanical, Industrial and Aeronautical EngineeringUniversity of the WitwatersrandJohannesburg WITS 2050South Africa
  2. 2.Faculty of Science, and TCSE, Faculty of Engineering and Built Environment, School of Computational and Applied MathematicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations