Nonlinear Dynamics

, Volume 80, Issue 4, pp 1853–1860 | Cite as

Fractional kinetics under external forcing

Chemotherapy of cancer
Original Paper


Fractional tumor development is considered in the framework of one-dimensional continuous time random walks (CTRW) in the presence of chemotherapy. The chemotherapy influence on the CTRW is studied by observations of both stationary solutions due to proliferation and fractional evolution in time.


Tumor development Migration–proliferation dichotomy  Fractional transport 



This research was supported by the Israel Science Foundation (ISF).


  1. 1.
    Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57 (2000)CrossRefGoogle Scholar
  2. 2.
    Giese, A., et al.: Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer 67, 275 (1996)CrossRefGoogle Scholar
  3. 3.
    Giese, A., et al.: Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21, 1624 (2003)CrossRefGoogle Scholar
  4. 4.
    Garay, T., et al.: Cell migration or cytokinesis and proliferation? Revisiting the go or grow hypothesis in cancer cells in vitro. Exp. Cell Res. (2013). doi: 10.1016/j.yexcr.2013.08.018
  5. 5.
    Jerby, L., et al.: Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. doi: 10.1158/0008-5472.CAN-12-2215
  6. 6.
    Khain, E., Sander, L.M.: Dynamics and pattern formation in invasive tumor growth. Phys. Rev. Lett. 96, 188103 (2006)CrossRefGoogle Scholar
  7. 7.
    Hatzikirou, H., Basanta, D., Simon, M., Schaller, K., Deutsch, A.: “Go or Grow”: the key to the emergence of invasion in tumour progression? Math. Med. Biol. 29, 49 (2010)CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Chauviere, A., Prziosi, L., Byrne, H.: A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism. Math. Med. Biol. 27, 255 (2010)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kolobov, A.V., Gubernov, V.V., Polezhaev, A.A.: Autowaves in the model of infiltrative tumour growth with migration–proliferation dichotomy. Math. Model. Nat. Phenom. 6, 27 (2011)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fedotov, S., Iomin, A., Ryashko, L.: Non-Markovian models for migration–proliferation dichotomy of cancer cells: anomalous switching and spreading rate. Phys. Rev. E 84, 061131 (2011)CrossRefGoogle Scholar
  11. 11.
    Iomin, A.: Toy model of fractional transport of cancer cells due to self-entrapping. Phys. Rev. E 73, 061918 (2006)CrossRefGoogle Scholar
  12. 12.
    Montroll, E.W., Shlesinger, M.F.: The wonderful world of random walks. In: Lebowitz, J., Montroll, E.W. (eds.) Studies in Statistical Mechanics, vol. 11. Noth-Holland, Amsterdam (1984) Google Scholar
  13. 13.
    Metzler, R., Klafter, J.: The Random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Stern, J.I., Raizer, J.J.: Chemotherapy in the Treatment of malignant gliomas. Expert Rev. Anticancer Ther. 6, 755–767 (2006)CrossRefGoogle Scholar
  15. 15.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  16. 16.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.: Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)Google Scholar
  17. 17.
    Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefMATHGoogle Scholar
  18. 18.
    Fedotov, S., Iomin, A.: Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion. Phys. Rev. E 77, 031911 (2008)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  20. 20.
    Petrovskii, S.V., Li, B.-L.: Exactly Solvable Models of Biological Invasion. Chapman & Hall, Boca Raton (2005)CrossRefGoogle Scholar
  21. 21.
    Tracqui, P., et al.: A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif. 28, 17 (1995)CrossRefGoogle Scholar
  22. 22.
    Swanson, K.R., Alvord Jr, E.C., Murray, J.D.: Quantifying efficacy of chemotherapy of brain tumors (gliomas) with homogeneous and heterogeneous drug delivery. Acta Biotheor. 50, 223 (2002)CrossRefGoogle Scholar
  23. 23.
    Janke, E., Emde, F., Lösh, F.: Tables of Higher Functions. McGraw-Hill, New York (1960)Google Scholar
  24. 24.
    Bagchi, B.K.: Supersymmetry in quantum and classical mechanics. Chapman & Hall/CRC, New York (2001)MATHGoogle Scholar
  25. 25.
    Glauber, R.G.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Louisell, W.H.: Radiation and noise in quantum electronics. McGraw-Hill, New York (1964)Google Scholar
  27. 27.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons fractals 7, 1461 (1996)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Minniti, G., et al.: Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 29, 5171 (2009)Google Scholar
  29. 29.
    Blinkov, S.M., Gleser, I.I.: The Human Brain in Figures and Tables: A Quantitative Handbook. Basic Books Inc., Plenum Press, New York (1968)Google Scholar
  30. 30.
    Usher, J.R.: Some mathematical models for cancer chemotherapy. Comput. Math. Appl. 28, 73 (1994)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhysicsTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations