Advertisement

Nonlinear Dynamics

, Volume 78, Issue 4, pp 2319–2329 | Cite as

Weak centers and local critical periods for a \(Z_{2}\)-equivariant cubic system

  • Ting Chen
  • Wentao Huang
  • Dacheng Ren
Original Paper

Abstract

In this paper, we consider the weak center conditions and local critical periods for a \(Z_{2}\)-equivariant cubic system with eleven center conditions at the bi-center. Using the computer algebra system Mathematica, we compute the period constants and obtain the order of the weak center for every center condition separately. Finally, the number of local critical periods bifurcating from the bi-center is given by symbolic computation and numerical computation.

Keywords

\(Z_{2}\)-equivariant system Period constant Weak center Critical period 

Mathematics Subject Classification

34C07 34C15 

Notes

Acknowledgments

The first author was supported by the Innovation Project of GUET Graduate Education of Guangxi(XJYC2012022). The second author was supported by the National Natural Science Foundation of China (11261013,11361017), Natural Science Foundation of Guangxi(2012GXNSFAA053003) and Guangxi Education Department Key Laboratory of Symbolic Computation and Engineering Data Processing.

References

  1. 1.
    Balth, V.D.P.: The nonlinear theory of electric oscillations. Proc. Inst. Rad. Eng. 22, 1051–1086 (1934)MATHGoogle Scholar
  2. 2.
    Kelso, J.A.S., Holt, K.G., Rubin, P., Kugler, P.N.: Patterns of human interlimb coordination emerge from the properties of nonlinear, limit cycle oscillatory processes: Theo. D. J. Mot. Beha. 13, 226–261 (1981)CrossRefGoogle Scholar
  3. 3.
    Basso, M., Genesio, R., Tesi, A.: A frequency method for predicting limit cycle bifurcations. Nonlinear Dyn. 13, 339–360 (1997)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Lv, Y., Yuan, R., Pei, Y.: Dynamics in two nonsmooth predator-prey models with threshold harvesting. Nonlinear Dyn. 74, 107–132 (2013)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bautin, N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Am. Math. Soc. Trans. 100, 397–413 (1954)MathSciNetGoogle Scholar
  6. 6.
    Chicone, C., Jacobs, M.: Bifurcation of critical periods for plane vector fields. Trans. Am. Math. Soc. 312, 433–486 (1989)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Liu, Y., Li, J.: The normal form and critical points of closed orbits for autonomous planar system. Acta. Math. Sinica. 34, 490–501 (1991)MathSciNetGoogle Scholar
  8. 8.
    Rousseau, C., Toni, B.: Local bifurcations of critical periods in vector fields with homogeneous nonlinearities of the third degree. Can. J. Math. 36, 473–484 (1993)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Romanovski, V., Han, M.: Critical period bifurcations of a cubic system. J. Phys. A Math Gen. 36, 5011–5022 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Zhang, W., Hou, X., Zeng, Z.: Weak centers and bifurcation of critical periods in revertible cubic system. Comput. Math. Appl. 40, 771–782 (2000)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chen, X., Zhang, W.: Decomposition of algebraic sets and applications to weak centers of cubic systems. J. Comput. Appl. Math. 232, 565–581 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Yu, P., Han, M.: Critical periods of planar revertible vector field with third-degree polynomial functions. Int. J. Bifurc. Chaos. 19, 419–433 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Rousseau, C., Toni, B.: Local bifurcations of critical periods in the reduced Kukles system. J. Math. 49, 338–358 (1997)MATHMathSciNetGoogle Scholar
  14. 14.
    Maosas, F., Villadelprat, J.: A note on the critical periods of potential systems. Int. J. Bifurc. Chaos 16, 765–774 (2006)CrossRefGoogle Scholar
  15. 15.
    Yu, P., Han, M., Zhang, J.: Critical periods of third-order planar hamiltonian systems. Int. J. Bifurc. Chaos. 20, 2213–2224 (2010)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Zou, L., Chen, X., Zhang, W.: Local bifurcations of critical periods for cubic Liénard equations with cubic damping. J. Comput. Appl. Math. 222, 404–410 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Xu, Q., Huang, W.: The center conditions and local bifurcation of critical periods for a Liénard system. Appl. Math. Comput. 217, 6637–6643 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Du, Z.: On the critical periods of Liénard systems with cubic restoring forces. Int. J. Math. Math. Sci. 61, 3259–3274 (2004)CrossRefGoogle Scholar
  19. 19.
    Gasull, A., Zhao, Y.: Bifurcation of critical periods from the rigid quadratic isochronous vector field. Bull. Sci. Math. 132, 291–312 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Cima, A., Gasull, A., Silvab, P.: On the number of critical periods for planar polynomial systems. Nonlinear Anal. 69, 1889–1903 (2008)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Chen, A., Li, J., Huang, W.: The monotonicity and critical periods of periodic waves of the 6 field model. Nonlinear Dyn. 63, 205–215 (2011)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Li, J., Liu, Y.: New results on the study of \(Z_{q}\)-equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Liu, Y., Huang, W.: A new method to determine isochronous center conditions for polynomial differential systems. Bull. Sci. Math. 127, 133–148 (2003)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Liu, Y., Li, J., Huang, W.: Singular point values, center problem and bifurcations of limit cycles of two dimensional differential autonomous systems. Science Press, Beijing (2008)Google Scholar
  25. 25.
    Romanovski, V., Shafer, D.: The center and cyclicity problems: a computational algebra approach. Birkhäuser Boston Inc, Boston, MA (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Mathematics and Computing ScienceGuilin University of Electronic TechnologyGuilin China
  2. 2.Department of MathematicsHezhou UniversityHezhou China

Personalised recommendations