Advertisement

Nonlinear Dynamics

, Volume 78, Issue 2, pp 1311–1320 | Cite as

Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system

Original Paper

Abstract

Recently, a novel image encryption algorithm based on DNA operation and hyper-chaotic system has been proposed by Zhang et al. The encryption algorithm first shuffles the image pixels using Chen chaotic system. After shuffling process, the proposed encryption algorithm changes the gray levels of the image pixels using DNA operation. In this study, we give out complete break for the proposed cryptosystem using a chosen plaintext attack. Both mathematical proofs and experimental results are presented to support the proposed attacks. Main motivation behind this study was to analyze whether proposed image encryption algorithm is suitable for secure communication or not. Based on the results of our analysis, we also discussed the potential improvements for the algorithm and proposed a modified new encryption algorithm accordingly. Essential elements of designing secure image encryption algorithms and potential application areas are also stated.

Keywords

Chaos Cryptography Cryptanalysis Image encryption DNA operation 

References

  1. 1.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Protocols. Chapman & Hall, Boca Raton (2008)Google Scholar
  2. 2.
    Amigo, J.M., Kocarev, L., Szczapanski, J.: Theory and practice of chaotic cryptography. Phys. Lett. A 366, 211–216 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers. IEEE Trans. Circ. Syst.-I 48/2, 163–169 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alvarez, G., Amigo, J.M., Arroyo, D., Li, S.: Lessons learnt from the cryptanalysis of chaos-based ciphers. In: Kocarev, L., Lian, S. (eds.) Chaos Based Cryptography Theory Algorithms and Applications, pp. 257–295. Springer, Berlin (2011)CrossRefGoogle Scholar
  6. 6.
    Solak, E.: Cryptanalysis of chaotic ciphers. In: Kocarev, L., Lian, S. (eds.) Chaos Based Cryptography Theory Algorithms and Applications, pp. 227–256. Springer, Berlin (2011)CrossRefGoogle Scholar
  7. 7.
    Hu, H., Liu, L., Ding, N.: Pseudorandom sequence generator based on Chen chaotic system. Comput. Phys. Commun. 184(3), 765–768 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhu, C.: A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285(1), 29–37 (2012)CrossRefGoogle Scholar
  9. 9.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurcat. Chaos 8(6), 1259–1284 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Guan, Z.-H., Huang, F., Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. A 346, 153–157 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Patidar, V., Pareek, N.K., Sud, K.K.: A new substitution-diffusion based image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3056–3075 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, Z., Ip, W.H., Chan, C.Y., Yung, K.L.: Two-level chaos-based video cryptosystem on H.263 codec. Nonlinear Dyn. 62(3), 647–664 (2010)CrossRefGoogle Scholar
  13. 13.
    Sheu, L.J.: A speech encryption using fractional chaotic systems. Nonlinear Dyn. 65(1–2), 103–108 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron mode. Nonlinear Dyn. 62(3), 615–621 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Liu, H., Wang, X.: Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Opt. Commun. 284, 3895–3903 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10), 3320–3327 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wang, X., Yu, Q.: A block encryption algorithm based on dynamic sequences of multiple chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 14(2), 574–581 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution–diffusion based image cipher. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1887–1892 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Özkaynak, F., Özer, A.B., Yavuz, S.: Cryptanalysis of a novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285, 4946–4948 (2012)CrossRefGoogle Scholar
  20. 20.
    Özkaynak, F., Özer, A.B., Yavuz, S.: Cryptanalysis of Bigdeli algorithm using Çokal and Solak attack. Int. J. Inf. Secur. Sci. 1(3), 79–81 (2012)Google Scholar
  21. 21.
    Çokal, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm. Phys. Lett. A 373, 1357–1360 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Solak, E., Çokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurcat. Chaos 20(5), 1405–1413 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Li, C., Zhang, Y., Ou, R., Wong, K.-W.: Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70(4), 2383–2388 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Li, C., Li, Q., Zhang, D., Shu, S.: Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 69(3), 1091–1096 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zhang, Y., Xiao, D.: Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn. 72, 751–756 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    He, D., Chen, Y., Chen, J.: Cryptanalysis and improvement of an extended chaotic maps-based key agreement protocol. Nonlinear Dyn. 69, 1149–1157 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Özkaynak, F., Yavuz, S.: Security problems of pseudorandom sequence generator based on Chen chaotic system. Comput. Phys. Commun. 184, 2178–2181 (2013)CrossRefGoogle Scholar
  28. 28.
    Liu, H.J., Wang, X.Y., Kadir, A.: Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 12, 1457–1466 (2012)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y.Q., Wang, X.Y.: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014). doi: 10.1016/j.ins.2014.02.156 CrossRefGoogle Scholar
  30. 30.
    Wang, Y., Wong, K.W., Liao, X.F., Chen, G.R.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11, 514–522 (2011)CrossRefGoogle Scholar
  31. 31.
    Wu, Y., Zhou, Y.C., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zhang, W., Wong, K.W., Yu, H., Zhu, Z.L.: A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commun. Nonlinear Sci. Numer. Simul. 18, 584–600 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zhang, Y.S., Xiao, D.: Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn. 72, 751–756 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, Y.S., Xiao, D.: An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun. Nonlinear Sci. Numer. Simul. 19, 74–82 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhu, Z.L., Zhang, W., Wong, K.W., Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181, 1171–1186 (2011)CrossRefGoogle Scholar
  36. 36.
    Zhang, Q., Guo, L., Wei, X.: A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 124(18), 3596–3600 (2013)CrossRefGoogle Scholar
  37. 37.
    Özkaynak, F., Özer, A.B.: A method for designing strong S-Boxes based on chaotic Lorenz system. Phys. Lett. A 374, 3733–3738 (2010)CrossRefMATHGoogle Scholar
  38. 38.
    Khan, M., Shah, T., Mahmood, H., Gondal, M.A., Hussain, I.: A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems. Nonlinear Dyn. 70, 2303–2311 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hussain, I., Shah, T., Gondal, M.A.: A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm. Nonlinear Dyn. 70, 1791–1794 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Özkaynak, F., Yavuz, S.: Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dyn. 74(3), 551–557 (2013)Google Scholar
  41. 41.
    Lambić, D.: A novel method of S-box design based on chaotic map and composition method. Chaos, Solitons Fractals 58, 16–21 (2014) Google Scholar
  42. 42.
    Özkaynak, F., Özer, A.B.: A novel algorithm for strengthening of chaos based S-Box generators. In: 2010 National Conference on Electrical, Electronics and Computer Engineering, ELECO 2010, pp. 553–557Google Scholar
  43. 43.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: An efficient approach for the construction of LFT S-boxes using chaotic logistic map. Nonlinear Dyn. 71, 133–140 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Liu, H., Kadir, A., Niu, Y.: Chaos-based color image block encryption scheme using S-box. AEU-Int. J. Electron. Commun. (2014)Google Scholar
  45. 45.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). (revised edition)CrossRefMATHGoogle Scholar
  46. 46.
    Nyberg, K.: Differentially uniform mappings for cryptography, vol. 765. In: Proceedings of Eurocrypt’93 Lecture Notes in Computer Science, pp. 55–64 (1994)Google Scholar
  47. 47.
    Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael?, Advances in Cryptology—Asiacrypt 2002, vol. 2501. Lecture Notes in Computer Science, pp. 160–175 (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Software EngineeringFırat UniversityElazigTurkey
  2. 2.Department of Computer EngineeringYıldız Technical UniversityIstanbulTurkey

Personalised recommendations