Skip to main content
Log in

Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the effectiveness of linear and nonlinear time-delay feedback controls to suppress high amplitude oscillations of an elastically mounted square cylinder undergoing galloping oscillations. A representative model that couples the transverse displacement and the aerodynamic force is used. The quasi-steady approximation is used to model the galloping force. A linear analysis is performed to investigate the effect of linear time-delay controls on the onset speed of galloping and natural frequencies. It is demonstrated that a linear time-delay control can be used to delay the onset speed of galloping. The normal form of the Hopf bifurcation is then derived to characterize the type of the instability (supercritical or subcritical) and to determine the effects of the linear and nonlinear time-delay parameters on their outputs near the bifurcation. The results show that the nonlinear time-delay control can be efficiently implemented to significantly reduce the galloping amplitude and suppress any dangerous behavior by converting any subcritical Hopf bifurcation into a supercritical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen, S.S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publishing Corporation, Washington, DC (1987)

    Google Scholar 

  2. Chang, W.K., Pilipchuk, V., Ibrahim, R.A.: Fluid flow-induced nonlinear vibration of suspended cables. Nonlinear Dyn. 14, 377–406 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  4. Paidoussis, M.P., Price, S.J., de Langre, E.: Fluid Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  5. Wang, L., Dai, H.L., Han, Y.Y.: Cross-flow-induced instability and nonlinear dynamics of cylinder arrays with consideration of initial axial load. Nonlinear Dyn. 67, 1043–1051 (2012)

    Article  MathSciNet  Google Scholar 

  6. Li, F.M.: Active aeroelastic flutter suppression of a supersonic plate with piezoelectric material. Int. J. Eng. Sci. 51, 190–203 (2012)

    Article  Google Scholar 

  7. Berryman, J.G.: Combining analysis of random elastic polycrystals with poroelasticity for granular composites having orthotropic porous grains and fluid-filled pores. Int. J. Eng. Sci. 72, 11–21 (2013)

    Article  Google Scholar 

  8. Paak, M., Paidoussis, M.P., Misra, A.K.: Nonlinear dynamics and stability of cantilevered circular cylindrical shells conveying fluid. J. Sound Vib. 332, 3474–3498 (2013)

    Article  Google Scholar 

  9. Ghayesh, M.H., Paidoussis, M.P., Amabili, M.: Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J. Sound Vib. 332, 6405–6418 (2013)

    Article  Google Scholar 

  10. Wang, L.: Flutter instability of supported pipes conveying fluid subjected to distributed follower force. Acta Mech. Solida Sin. 25, 46–52 (2012)

    Article  Google Scholar 

  11. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser with weak structural nonlinearity excited by wakes. J. Sound Vib. 315, 685–699 (2008)

    Article  Google Scholar 

  12. Dai, H.L., Wang, L., Qian, Q., Ni, Q.: Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes. J. Fluids Struct. 39, 322–334 (2013)

    Article  Google Scholar 

  13. Dai, H.L., Wang, L., Qian, Q., Ni, Q.: Vortex-induced vibrations of pipes conveying pulsating fluid. Ocean Eng. 77, 12–24 (2014)

    Article  Google Scholar 

  14. Fan, C.C., Syu, J.W., Pan, M.C., Tsao, W.C.: Study of start-up vibration response for oil whirl, oil whip and dry whip. Mech. Syst. Signal Process. 25, 3102–3115 (2011)

    Article  Google Scholar 

  15. Blevins, R.D.: Flow-Induced Vibrations. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  16. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  17. Naudascher, E., Rockwell, D.: Flow-Induced Vibrations: An Engineering Guide. Dover, New York (1994)

    Google Scholar 

  18. Alonso, G., Meseguer, J., Prez-Grande, I.: Galloping stabilities of two-dimensional triangular cross-sectional bodies: a systematic approach. J. Wind Eng. Ind. Aerodyn. 95, 928–940 (2007)

    Article  Google Scholar 

  19. Wang, L., Liu, W.B., Dai, H.L.: Aeroelastic galloping response of square prisms: the role of time-delayed feedbacks. Int. J. Eng. Sci. 75, 79–84 (2014)

    Article  Google Scholar 

  20. Barrero-Gil, A., Alongso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329, 2873–2883 (2010)

    Article  Google Scholar 

  21. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)

    Article  MathSciNet  Google Scholar 

  22. Abdelkefi, A., Yan, Z., Hajj, M.R.: Temperature impact on the performance of galloping-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 055026 (2013)

    Article  Google Scholar 

  23. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22, 015014 (2013)

    Article  Google Scholar 

  24. Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)

    Article  Google Scholar 

  25. Yang, Y., Zhao, L., Tang, L.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 064105 (2013)

    Article  Google Scholar 

  26. Mehmood, A., Abdelkefi, A., Akhtar, I., Nayfeh, A.H., Nuhait, A., Hajj, M.R.: Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders. J. Vib. Control. (2012). doi:10.1177/1077546312469425

  27. Bert, C.W., Egle, D.M., Wilkins, D.J.: Optimal design of a non-linear dynamic absorber. J. Sound Vib. 137, 347–352 (1990)

    Article  Google Scholar 

  28. Lee, Y.S., Vakakis, A.F., Bergman, L.A., et al.: Passive nonlinear targeted energy transfer and its applications to vibration and absorption: A review. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 222, 77 (2008)

    MathSciNet  Google Scholar 

  29. Gendelman, V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70, 1655–1677 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gendelman, V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  MATH  Google Scholar 

  31. Abdelkefi, A., Ghommem, M.: Model reduction of nonlinear aeroelastic systems experiencing Hopf bifurcation. J Model. Simul. Identif. Control 1, 57–77 (2013)

    Google Scholar 

  32. Masoud, Z., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34, 347–358 (2003)

    Article  MATH  Google Scholar 

  33. Masoud, Z., Nayfeh, A.H., Nayfeh, N.A.: Sway reduction on quay-side container cranes using delayed feedback controller: simulations and experiments. J. Vib. Control. 11, 1103 (2005)

    Article  MATH  Google Scholar 

  34. Nayfeh, A.H., Nayfeh, N.A.: Time-delay feedback control of lathe cutting tools. J. Vib. Control. 18, 1106 (2012)

    Article  MathSciNet  Google Scholar 

  35. Parkinson, G.V., Smith, J.D.: The square prism as an aeroelastic nonlinear oscillator. Q. J. Mech. Appl. Math. 17, 225–239 (1964)

    Article  MATH  Google Scholar 

  36. Nayfeh, A.H., Nayfeh, N.A.: Analysis of the cutting tool on a lathe. Nonlinear Dyn. 63, 395–416 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Program for New Century Excellent Talents in University (NCET-11-0183) and the Fundamental Research Funds for the Central Universities, HUST (2013TS034, 2014YQ007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H.L., Abdelkefi, A., Wang, L. et al. Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks. Nonlinear Dyn 78, 907–919 (2014). https://doi.org/10.1007/s11071-014-1485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1485-z

Keywords

Navigation