Skip to main content
Log in

Nonlinear dynamic modeling on multi-spherical modular soft robots

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A soft robot, which consists of multi-deformable spherical cells, is constructed. According to the deflating action and the inflating action of the spherical cells, the size and the shape of each spherical cell can be changed. Thus, the soft robot can move in a narrow complicated passage. In the paper, a modular soft robot is built. The nonlinear relationship between the inflation radius (\(R)\) of each cell and the inflation time (\(t)\) is described to control the action of the spherical cell. The nonlinear dynamic moving process is analyzed with the deflating and inflating modes of each cell. The theoretical analysis of the forward locomotion is counted. Then, two special positions are described, and the moving conditions are presented in details. Last, a simulation and an experiment of three spherical cells are shown to emulate the moving process of the soft robot. It shows that the modular soft robot consisting of multi-deformable spherical modules can move forward with the nonlinear dynamic inflating and deflating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trend. Biotech. 31(5), 287–294 (2013)

    Article  Google Scholar 

  2. Fei, Y.Q., Shen, X.Y.: Nonlinear analysis on moving process of soft robots. Nonlinear Dyn. 73(1–2), 672–677 (2013)

    MathSciNet  Google Scholar 

  3. Lin, H., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6, 026007 (2011). doi:10.1088/1748-3182/6/2/026007

    Article  Google Scholar 

  4. Trimmer, B., Lin, H., Amanda, B., Leisk, G. G., Kaplan, D. L.: Towards a biomorphic soft robot: design constraints and solutions. In: Proceedings 4th International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 599–605 (2012)

  5. Mitsuhiro, H., Katsuhiko, N., Hiroyuki, S.: Telemetric artificial skin for soft robot. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, 957–961 (1999)

  6. Onal, C.D., Rus, D.: Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir. Biomim. 8, 026003 (2013). doi:10.1088/1748-3182/8/2/026003

  7. Cecilia, L., Matteo, C., Barbara, M., Laura, M., Maurizio, F., Paolo, D.: Soft robot arm inspired by the octopus. Adv. Robot. (2012). doi:10.1088/1748-3182/7/2/025005

    Google Scholar 

  8. Cheng, N. G., Lobovsky, M., Keating, S., Setapen, A., Gero, K. I., Hosoi, A., Iagnemma, K.: Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation, Saint Paul, 4328–4333 (2012)

  9. Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., Dario, P., Laschi, C.: Design and development of a soft robot with crawling and grasping capabilities. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation, Saint Paul, 4950–4955 (2012)

  10. Saber, M., Masoud, S.F., Ahmad, G.: Design and implementation of a novel spherical mobile robot. J. Intell. Robot. Syst. (2012). doi:10.1007/s10846-012-9748-8

    Google Scholar 

  11. Koizumi, Y., Shibata, M., Hirai, S.: Rolling tensegrity driven by pneumatic soft actuators. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation, Saint Paul, 1988–1993 (2012)

  12. Sugiyama, Y., Hirai, S.: Crawling and jumping by a deformable robot. Int. J. Robot. Res. 25(5–6), 603–620 (2006)

    Article  Google Scholar 

  13. Yao, J., Di, D., Gao, S., He, L., Hu, S.: Sliding mode control scheme for a jumping robot with multi-joint based on floating basis. Int. J. Control. 85(1), 41–49 (2012)

    Article  MATH  Google Scholar 

  14. Marchese, A., D., Onal, C. D., Rus, D.: Soft robot actuators using energy-efficient valves controlled by electropermanent magnets. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 756–761 (2011)

  15. Teruyoshi, O., Taro, N.: Path tracking method for traveling-wave-type omnidirectional mobile robot (TORoIII). J. Robot. Mech. 24(2), 340–346 (2012)

    Google Scholar 

  16. Ivancevic, V.G.: Nonlinear complexity of human biodynamics engine. Nonlinear Dyn. 61, 123–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Beatty,M. F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40 (1987) 1699–1733. Reprinted with minor modifications as ”Introduction to nonlinear elasticity” in: Carroll, M.M., Hayes M.A. (eds), Nonlinear Effects in Fluids and Solids, pp. 16–112. Plenum Press, New York (1996)

  18. Boresi, A.P., Chong, K.P., Lee, J.D.: Elasticity in Engineering Mechanics, p. 230. Wiley, Hoboken (2010)

    Book  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant No. 51075272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiong Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Y., Gao, H. Nonlinear dynamic modeling on multi-spherical modular soft robots. Nonlinear Dyn 78, 831–838 (2014). https://doi.org/10.1007/s11071-014-1480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1480-4

Keywords

Navigation