Skip to main content
Log in

CDKF approach for estimating a static parameter of carrier frequency offset based on nonlinear measurement equations in OFDM systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

“Central difference Kalman filtering (CDKF)” is proposed as a new state of the art approach for carrier frequency offset estimation in orthogonal frequency division multiplexing systems. The parameter of interest to be estimated in this problem is a static value rather than a dynamically varying parameter. Therefore, classical approaches (e.g., maximum likelihood method or best linear unbiased estimator) might be more pertinent than Bayesian approaches if it is assumed to be a deterministic value. Nonetheless, it is shown and justified that a recently developed extended Kalman variant, i.e., CDKF, outperforms previously proposed methods in terms of mean squared error with efficient processing speed. Particularly, it is shown that CDKF outperforms recently proposed Gaussian particle filter for this one-dimensional static parameter estimation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The Cholesky factorization is available in \(\mathsf MATLAB \) by “chol” function. \(P_k\) must be positive definite for Cholesky factorization.

References

  1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new approach for filteirng nonlinear systems. Proc. Am. Control Conf. 3, 1628–1632 (1995)

    Google Scholar 

  4. Jwo, D.J., Yang, C.F., Chuang, C.H., Lee, T.Y.: Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter. Nonlinear Dyn. 7, 377–395 (2013). doi:10.1007/s11071-013-0793-z

    Article  MathSciNet  Google Scholar 

  5. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  6. Karimpour, H., Mahzoon, M., Keshmiri, M.: Exploring the analogy for adaptive attitude control of a ground-based satellite system. Nonlinear Dyn. 69(4), 2221–2235 (2012). doi:10.1007/s11071-012-0421-3

    Article  MathSciNet  Google Scholar 

  7. Lim, J., Hong, D.: Inter-carrier interference estimation in OFDM systems with unknown noise distributions. IEEE Signal Process. Lett. 16(6), 493–496 (2009)

    Article  Google Scholar 

  8. Lim, J., Hong, D.: Gaussian particle filtering approach for carrier frequency offset estimation in OFDM systems. IEEE Signal Process. Lett. 20(4), 367–370 (2013)

    Article  Google Scholar 

  9. Liu, X., Liu, H.J., Tang, Y.G., Gao, Q., Chen, Z.M.: Fuzzy adaptive unscented Kalman filter control of epileptiform spikes in a class of neural mass models. Nonlinear Dyn. 76(2), 1291–1299 (2014)

  10. Merwe, R.: Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. Ph.D. thesis, OGI School of Science & Engineering, Oregon Health & Science University, Portland, Oregon (2004)

  11. Moose, P.H.: A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun. 42(10), 2908–2914 (1994)

    Article  Google Scholar 

  12. Morelli, M., Mengali, U.: An improved frequency offset estimator for OFDM applications. IEEE Commun. Lett. 3(3), 75–77 (1999)

    Article  Google Scholar 

  13. Nørgaard, M., Poulsen, N., Ravn, O.: Advances in derivative-free state esimation for nonlinear systems. Technical Report TR. IMM-REP-1998-15, Department of Mathematical Modelling, Technical University of Denmark, 28 Lyngby, Denmark (2000)

  14. Nørgaard, M., Poulsen, N., Ravn, O.: New developments in state estimation for nonlinear systems. Automatica 36(11), 1627–1638 (2000)

    Article  MathSciNet  Google Scholar 

  15. Olson, C., Nichols, J., Virgin, L.: Parameter estimation for chaotic systems using a geometric approach: theory and experiment. Nonlinear Dyn. 70(1), 381–391 (2012). doi:10.1007/s11071-012-0461-8

  16. Palamides, A.P., Maras, A.M.: A Bayesian state-space approach to combat inter-carrier interference in OFDM systems. IEEE Signal Process. Lett. 14(10), 677–679 (2007)

  17. Schmidl, T.M., Cox, D.C.: Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 45(12), 1613–1621 (1997)

    Article  Google Scholar 

  18. Van der Merwe, R., Wan, E.A.: The square-root unscented Kalman filter for state and parameter-estimation. In: 2001 IEEE International Conference on Acoustics. Speech, and Signal Processing (ICASSP), vol. 6, pp. 3461–3464. Salt Lake City, Utah, U.S. (2001)

  19. Wang, L., Zhang, X., Xu, D., Huang, W.: Study of differential control method for solving chaotic solutions of nonlinear dynamic system. Nonlinear Dyn. 67(4), 2821–2833 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by “Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2011-0009255)” and “the Ministry of Science, ICT and Future Planning, Korea, under the ‘IT Consilience Creative Program’ (NIPA-2014-H0201-14-1001) supervised by the National IT Industry Promotion Agency.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaechan Lim.

Appendix: Cramer–Rao bound (CRB)

Appendix: Cramer–Rao bound (CRB)

The variance of the estimate, \(\hat{\varepsilon }\) for any unbiased estimator is bounded by the inverse of the Fisher information as follows.

$$\begin{aligned} \mathsf Var (\hat{\varepsilon }) \ge J^{-1} = \frac{1}{-\mathsf E \left[\frac{\partial ^2 \ln p(y_{0:N-1};\varepsilon )}{\partial \varepsilon ^2} \right]} \end{aligned}$$
(9)

where \(\mathsf E [\cdot ]\) denotes the expected value and \(J\) is the Fisher information.

Since the likelihood function, (note that the noise is complex Gaussian)

$$\begin{aligned} p(y_{0:N-1};\varepsilon ) = \frac{1}{\left(\pi \sigma _w^2 \right)^N} \exp \left[-\frac{1}{\sigma _w^2} \sum _{k=0}^{N-1} |y_k - f_k|^2 \right]\end{aligned}$$
(10)

where \(\sigma _w^2\) is the variance of the measurement noise, the bound can be derived as follows.

$$\begin{aligned} \mathsf Var (\hat{\varepsilon }) \ge \frac{\sigma _w^2}{2 \sum _{k=0}^{N-1} \left({f_{kr}^{\prime }}^2 + {f_{ki}^{\prime }}^2 \right)} \end{aligned}$$
(11)

where \(f_{kr}, f_{ki}\) denote the real and imaginary parts of \(f_k (\varepsilon )\), respectively, \(f'_{kr} = \frac{\partial f_{kr}}{\partial \varepsilon }\), and \(f'_{ki} = \frac{\partial f_{ki}}{\partial \varepsilon }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J. CDKF approach for estimating a static parameter of carrier frequency offset based on nonlinear measurement equations in OFDM systems. Nonlinear Dyn 78, 703–711 (2014). https://doi.org/10.1007/s11071-014-1470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1470-6

Keywords

Navigation