Nonlinear Dynamics

, Volume 78, Issue 1, pp 317–327 | Cite as

Chaos control in a pendulum system with excitations and phase shift

  • Xianwei Chen
  • Zhujun Jing
  • Xiangling Fu
Original Paper


Melnikov methods are used for suppressing homoclinic and heteroclinic chaos of a pendulum system with a phase shift and excitations. This method is based on the addition of adjustable amplitude and phase-difference of parametric excitation. Theoretically, we give the criteria of suppression of homoclinic and heteroclinic chaos, respectively. Numerical simulations are given to illustrate the effect of the chaos control in this system. Moreover, we calculate the maximum Lyapunov exponents (LEs) in parameter plane, and study how to vary the maximum LE when the parametric frequency varies.


Pendulum equation Phase shift Bifurcation Chaos control Melnikov methods 



The authors would like to thank the reviewers for their helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China (No. 11071066 and No. 11171206).


  1. 1.
    Alasty, A., Salarieh, H.: Nonlinear feedback control of chaotic pendulum in presence of saturation effect. Chaos Solitons Fractals 31(2), 292–304 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baker, G.L.: Control of the chaotic driven pendulum. Am. J. Phys. 63(9), 832–838 (1995)CrossRefGoogle Scholar
  3. 3.
    Cao, H.J., Chi, X.B., Chen, G.R.: Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum. Int. J. Bifurc. Chaos 14(3), 1115–1120 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cao, H.J., Chen, G.R.: Global and local control of homoclinic and heteroclinic bifurcation. Int. J. Bifurc. Chaos 15(8), 2411–2432 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chacón, R.: Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum. Phys. Rev. E 52, 2330–2337 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chacón, R.: General results on chaos suppression for biharmonically driven dissipative systems. Phys. Lett. A 257, 293–300 (1999)CrossRefGoogle Scholar
  7. 7.
    Chacón, R., Palmero, F., Balibrea, F.: Taming chaos in a driven Josephson junction. Int. J. Bifurc. Chaos 11(7), 1897–1909 (2001)CrossRefGoogle Scholar
  8. 8.
    Chacón, R.: Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos. Eur. Phys. J. B 65, 207–210 (2002)CrossRefGoogle Scholar
  9. 9.
    Chen, G.R., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998)Google Scholar
  10. 10.
    Chen, G.R., Moiola, J., Wang, H.O.: Bifurcation control: theories, methods and applications. Int. J. Bifurc. Chaos 10(3), 511–548 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, X., Fu, X., Jing, Z.: Complex dynamics in a pendulum equation with a phase shift. Int. J. Bifurc. 22(12), 387–426 (2012)MathSciNetGoogle Scholar
  12. 12.
    D’Humieres, D., Beasley, M.R., Huberman, B.A., Libchaber, A.F.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26(6), 3483–3492 (1982)CrossRefGoogle Scholar
  13. 13.
    Jing, Z.J., Yang, J.P.: Complex dynamics in pendulum equation with parametric and external excitations (I). Int. J. Bifurc. Chaos 10(16), 2887–2902 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jing, Z.J., Yang, J.P.: Complex dynamics in pendulum equation with parametric and external excitations (II). Int. J. Bifurc. Chaos 10(16), 3053–3078 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kapitaniak, T.: Introduction. Chaos Solitons Fractals 15, 201–203 (2003) Google Scholar
  16. 16.
    Lenci, S., Rega, G.: A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dyn. 15, 391–409 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lenci, S., Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn. 33, 71–86 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lenci, S., Rega, G.: Optimal control of homoclinic bifurcation: theoretical treatment and practical reduction of safe basinerosion in the Helmholtz oscillator. J. Vib. Control 9(3), 281–316 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)MATHGoogle Scholar
  20. 20.
    Ott, E., Grebogi, N., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)Google Scholar
  21. 21.
    Perira-Pinto, F.H.I., Ferreira, A.M., Savi, M.A.: Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos Solitons Fractals 22, 653–668 (2004)CrossRefGoogle Scholar
  22. 22.
    Shinbrot, T., Ott, E., Grebogi, N., Yorke, J.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65, 3215–3218 (1990)CrossRefGoogle Scholar
  23. 23.
    Wang, R.Q., Jing, Z.J.: Chaos control of chaotic pendulum system. Chaos Solitons Fractals 21, 201–207 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wiggins, S.: Global bifurcation and chaos: analytical methods. Springer, Berlin (1988)CrossRefGoogle Scholar
  25. 25.
    Yagasaki, K., Uozumi, T.: Controlling chaos in a pendulum subjected to feedforward and feedback control. Int. J. Bifurc. Chaos 7(12), 2827–2835 (1997)CrossRefMATHGoogle Scholar
  26. 26.
    Yagasaki, K.: Dynamics a pendulum subjected to feedforward and feedback control. JSME. Int. J. 41(3), 545–554 (1998)CrossRefGoogle Scholar
  27. 27.
    Yang, J.P., Jing, Z.J.: Inhibition of chaos in a pendulum equation. Chaos Solitons Fractals 35, 726–737 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceHunan University of Science and TechnologyXiangtan People’s Republic of China
  2. 2.College of Mathematics and Computer Science , Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China)Hunan Normal UniversityChangsha People’s Republic of China
  3. 3.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing People’s Republic of China

Personalised recommendations