Nonlinear Dynamics

, Volume 78, Issue 1, pp 71–91 | Cite as

Local symmetry dynamics in one-dimensional aperiodic lattices: a numerical study

  • C. Morfonios
  • P. Schmelcher
  • P. A. Kalozoumis
  • F. K. Diakonos
Original Paper


A unifying description of lattice potentials generated by aperiodic one-dimensional sequences is proposed in terms of their local reflection or parity symmetry properties. We demonstrate that the ranges and axes of local reflection symmetry possess characteristic distributional and dynamical properties, determined here numerically for certain lattice types. A striking aspect of such a property is given by the return maps of sequential spacings of local symmetry axes, which typically traverse few-point symmetry orbits. This local symmetry dynamics allows for a description of inherently different aperiodic lattices according to fundamental symmetry principles. Illustrating the local symmetry distributional and dynamical properties for several representative binary lattices, we further show that the renormalized axis-spacing sequences follow precisely the particular type of underlying aperiodic order, revealing the presence of dynamical self-similarity. Our analysis thus provides evidence that the long-range order of aperiodic lattices can be characterized in a compellingly simple way by its local symmetry dynamics.


Aperiodic lattices Long-range order Local symmetries Discrete dynamics Symbolic manipulation 



This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. Further financial support by the Greek Scholarship Foundation IKY in the framework of an exchange program with Germany (IKYDA) is also acknowledged.


  1. 1.
    Maciá, E.: The role of aperiodic order in science and technology. Rep. Prog. Phys. 69, 397 (2006)CrossRefGoogle Scholar
  2. 2.
    Kohmoto, M., Sutherland, B., Tang, C.: Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B 35, 1020 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Maciá, E., Domínguez-Adame, F.: Physical nature of critical wave functions in Fibonacci systems. Phys. Rev. Lett. 76, 2957 (1996)CrossRefGoogle Scholar
  4. 4.
    Kohmoto, M., Sutherland, B., Iguchi, K.: Localization of optics: quasiperiodic media. Phys. Rev. Lett. 58, 2436 (1987)CrossRefGoogle Scholar
  5. 5.
    Gellermann, W., Kohmoto, M., Sutherland, B., Taylor, P.C.: Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72, 633 (1994)CrossRefGoogle Scholar
  6. 6.
    Huang, X.Q., Jiang, S.S., Peng, R.W., Hu, A.: Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers. Phys. Rev. B 63, 245104 (2001)CrossRefGoogle Scholar
  7. 7.
    Zhukovsky, S.V.: Perfect transmission and highly asymmetric light localization in photonic multilayers. Phys. Rev. A 81, 053808 (2010)CrossRefGoogle Scholar
  8. 8.
    Thiem, S., Schreiber, M.: Photonic properties of metallic-mean quasiperiodic chains. Eur. Phys. J. B 76, 339 (2010)CrossRefGoogle Scholar
  9. 9.
    Thiem, S., Schreiber, M., Grimm, U.: Light transmission through metallic-mean quasiperiodic stacks with oblique incidence. Philos. Mag. 91, 2801 (2011)CrossRefGoogle Scholar
  10. 10.
    Maciá, E.: Exploiting aperiodic designs in nanophotonic devices. Rep. Prog. Phys. 75, 036502 (2012)CrossRefGoogle Scholar
  11. 11.
    Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys 174, 149 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Damanik, D., Ghez, J.-M., Raymond, L.: A palindromic half-line criterion for absence of eigenvalues and applications to substitution hamiltonians. Ann. Henri Poincaré 2, 927 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Damanik, D., Hundertmark, D.: Reflection symmetries and absence of eigenvalues for one-dimensional Schrödinger operators. Proc. Am. Math. Soc. 132, 1957 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kalozoumis, P.A., Morfonios, C., Diakonos, F.K., Schmelcher, P.: Local symmetries in one-dimensional quantum scattering. Phys. Rev. A 87, 032113 (2013)CrossRefGoogle Scholar
  15. 15.
    Kalozoumis, P.A., Morfonios, C., Palaiodimopoulos, N., Diakonos, F.K., Schmelcher, P.: Local symmetries and perfect transmission in aperiodic photonic multilayers. Phys. Rev. A 88, 033857 (2013)CrossRefGoogle Scholar
  16. 16.
    Kalozoumis, P.A., Morfonios, C., Diakonos, F.K., Schmelcher, P.: Invariants of broken discrete symmetries. arXiv:1403.7149 (2014).
  17. 17.
    Maciá, E.: Exploiting quasiperiodic order in the design of optical devices. Phys. Rev. B 63, 205421 (2001)CrossRefGoogle Scholar
  18. 18.
    Dal, Negro L., Oton, C.J., Gaburro, Z., Pavesi, L., Johnson, P., Lagendijk, A., Righini, R., Colocci, M., Wiersma, D.S.: Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 90, 055501 (2003)CrossRefGoogle Scholar
  19. 19.
    Dal, Negro L., Boriskina, S.: Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178 (2012)CrossRefGoogle Scholar
  20. 20.
    Poddubny, A., Ivchenko, E.: Photonic quasicrystalline and aperiodic structures. Phys. E 42, 1871 (2010)CrossRefGoogle Scholar
  21. 21.
    Droubay, X.: Palindromes in the Fibonacci word. Inf. Proc. Lett. 55, 217 (1995)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183, 45 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theor. Comput. Sci. 223, 73 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theor. Comput. Sci. 292, 9 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Borel, J.-P., Reutenauer, C.: Palindromic factors of billiard words. Theor. Comput. Sci. 340, 334 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    de Luca, A., De Luca, A.: Palindromes in Sturmian Words. Lect. Notes Comput. Sci. 3572, 199 (2005)CrossRefGoogle Scholar
  27. 27.
    Glen, A.: Occurrences of palindromes in characteristic Sturmian words. Theor. Comput. Sci. 352, 31 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb. 30, 510 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Anisiu, M.-C., Anisiu, V., Kása, Z.: Properties of palindromes in finite words. Pure Math. Appl. 17, 183 (2006)MATHGoogle Scholar
  30. 30.
    Damanik, D.: Local symmetries in the period-doubling sequence. Discret. Appl. Math. 100, 115 (2000)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    de Luca, A., De Luca, A.: Combinatorial properties of Sturmian palindromes. Int. J. Found. Comput. Sci. 17, 557 (2006)CrossRefMATHGoogle Scholar
  32. 32.
    Fischler, S.: Palindromic prefixes and episturmian words. J. Comb. Theor. A 113, 1281–1282 (2006)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palindromes. Lect. Notes Comput. Sci. 6393, 135 (2010)CrossRefGoogle Scholar
  34. 34.
    Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput. Sci. 410, 5365 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Lu, L., Jia, H., Dröge, P., Li, J.: The human genome-wide distribution of DNA palindromes. Funct. Integr. Genomics 7, 221 (2007)CrossRefGoogle Scholar
  36. 36.
    Ravsky, O.: On the palindromic decomposition of binary words. J. Autom. Lang. Comb. 8, 75 (2003)MathSciNetMATHGoogle Scholar
  37. 37.
    Blondin-Massé, A., Brlek, S., Labbé, S.: Palindromic lacunas of the Thue-Morse word. In: Proceedings of 6th international conference on random generation of combinatorial structures, p. 53. Arezzo, Italia, 16–20 June 2008 .Google Scholar
  38. 38.
    Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. Int. J. Found. Comput. Sci. 15, 293 (2004)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Frid, A., Puzynina, S., Zamboni, L.: On minimal factorizations of words as products of palindromes. Adv. Appl. Math. 50, 737 (2013)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Zhi-Xiong, W., Zhi-Ying, W.: Some properties of the singular words of the Fibonacci word. Eur. J. Comb. 15, 587 (1994)CrossRefMATHGoogle Scholar
  41. 41.
    Chuan, W.-F., Ho, H.-L.: Locating factors of a characteristic word via the generalized Zeckendorf representation of numbers. Theor. Comput. Sci. 440, 39 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang, X., Grimm, U., Schreiber, M.: Trace and antitrace maps for aperiodic sequences: extensions and applications. Phys. Rev. B 62, 14020 (2000)CrossRefGoogle Scholar
  43. 43.
    Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, New York (2003)CrossRefGoogle Scholar
  44. 44.
    Baake, M.: A note on palindromicity. Lett. Math. Phys. 49, 217 (1999)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Moody, R.: Model sets: a survey. In: Axel, F., Dénoyer, F., Gazeau, J.P. (eds.) From Quasicrystals to More Complex Systems, p. 145. Springer, Berlin (2000)CrossRefGoogle Scholar
  46. 46.
    Guimond, L.-S., Masáková, Z., Pelantová, E.: Combinatorial properties of infinite words associated with cut-and-project sequences. J. Theor. Nombres Bordeaux 15, 697 (2003)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    de Luca, A.: A division property of the Fibonacci word. Inf. Proc. Lett. 54, 307 (1995)CrossRefMATHGoogle Scholar
  48. 48.
    Thiem, S., Schreiber, M.: Renormalization group approach for the wave packet dynamics in golden-mean and silver-mean labyrinth tilings. Phys. Rev. B 85, 224205 (2012)CrossRefGoogle Scholar
  49. 49.
    Thiem, S., Schreiber, M.: Wave packet dynamics, ergodicity, and localization in quasiperiodic chains. J. Phys. Condens. Matter 25, 075503 (2012)CrossRefGoogle Scholar
  50. 50.
    Bellissard, J., Bovier, A., Ghez, J.-M.: Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135, 379 (1991) Google Scholar
  51. 51.
    Damanik, D.: Singular continuous spectrum for the period doubling Hamiltonian on a set of full measure. Commun. Math. Phys. 196, 477 (1998)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Baake, M., Grimm, U.: Surprises in aperiodic diffraction. J. Phys. Conf. Ser. 226, 012023 (2010)CrossRefGoogle Scholar
  53. 53.
    Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and their Applications, p. 1. Springer, London (1999)CrossRefGoogle Scholar
  54. 54.
    Blondin-Massé, A., Brlek, S., Garon, A., Labbé, S.: Combinatorial properties of \(f\)-palindromes in the Thue-Morse sequence. Pure Math. Appl. 19, 39 (2008)Google Scholar
  55. 55.
    Blondin-Massé, A., Brlek, S., Frosini, A., Labbé, S., Rinaldi, S.: Reconstructing words from a fixed palindromic length sequence. Int. Fed. Inf. Process. 273, 101 (2008)Google Scholar
  56. 56.
    Sengupta, S., Chakrabarti, A., Chattopadhyay, S.: Electronic properties of a Cantor lattice. Physica B 344, 307 (2004)CrossRefGoogle Scholar
  57. 57.
    Esaki, K., Sato, M., Kohmoto, M.: Wave propagation through Cantor-set media: chaos, scaling, and fractal structures. Phys. Rev. E 79, 056226 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. Morfonios
    • 1
  • P. Schmelcher
    • 1
    • 2
  • P. A. Kalozoumis
    • 3
  • F. K. Diakonos
    • 3
  1. 1.Zentrum für Optische QuantentechnologienUniversität HamburgHamburgGermany
  2. 2.The Hamburg Centre for Ultrafast ImagingUniversität HamburgHamburgGermany
  3. 3.Department of PhysicsUniversity of AthensAthensGreece

Personalised recommendations