Nonlinear Dynamics

, Volume 78, Issue 1, pp 49–70 | Cite as

Bifurcation analysis of a diffusive ratio-dependent predator–prey model

Original Paper


In this paper, a ratio-dependent predator–prey model with diffusion is considered. The stability of the positive constant equilibrium, Turing instability, and the existence of Hopf and steady state bifurcations are studied. Necessary and sufficient conditions for the stability of the positive constant equilibrium are explicitly obtained. Spatially heterogeneous steady states with different spatial patterns are determined. By calculating the normal form on the center manifold, the formulas determining the direction and the stability of Hopf bifurcations are explicitly derived. For the steady state bifurcation, the normal form shows the possibility of pitchfork bifurcation and can be used to determine the stability of spatially inhomogeneous steady states. Some numerical simulations are carried out to illustrate and expand our theoretical results, in which, both spatially homogeneous and heterogeneous periodic solutions are observed. The numerical simulations also show the coexistence of two spatially inhomogeneous steady states, confirming the theoretical prediction.


Predator–prey Diffusion Ratio dependent Turing instability Hopf bifurcation Pitchfork bifurcation  Normal form 



The first author is supported by the State Key Program of National Natural Science of China (No. 11032009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University (NCET-11-0385); and the second author is partially supported by Natural Science and Engineering Council of Canada.


  1. 1.
    Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio-dependent prediction: an abstraction that works. Ecology 76, 995–1004 (1995)CrossRefGoogle Scholar
  2. 2.
    Aly, S., Kim, I., Sheen, D.: Turing instability for a ratio-dependent predator–prey model with diffusion. Appl. Math. Comput. 217, 7265–7281 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Allesina, S., Tang, S.: Stability criteria for complex ecosystems. Nature 483, 205–208 (2012)CrossRefGoogle Scholar
  4. 4.
    Arditi, R., Berryman, A.A.: The biological control paradox. Trends Ecol. Evol. 6, 32 (1991)CrossRefGoogle Scholar
  5. 5.
    Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)CrossRefGoogle Scholar
  6. 6.
    Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio-dependent models. Am. Nat. 138, 1287–1296 (1991)CrossRefGoogle Scholar
  7. 7.
    Arino, O., El abdllaoui, A., Mikram, J., Chattopadhyay, J.: Infection in prey population may act as a biological control in ratio-dependent predator–prey models. Nonlinearity 17, 1101–1116 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial Differential Equations and Related Topics, Lecture Notes in Math., Vol. 446, Springer, Berlin (1975)Google Scholar
  9. 9.
    Astrom, M.: The paradox of biological control revisited: per capita non-linearities. Oikos 78, 618–621 (1997)CrossRefGoogle Scholar
  10. 10.
    Banerjee, M.: Self-replication of spatial patterns in a ratio-dependent predator–prey model. Math. Comput. Model. 51, 44–52 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Banerjee, M., Petrovskii, S.: Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system. Theor. Ecol. 4, 37–53 (2011)CrossRefGoogle Scholar
  12. 12.
    Bartumeus, F., Alonsoa, D., Catalana, J.: Self-organized spatial structures in a ratio-dependent predator–prey model. Physica A 295, 53–57 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Beretta, E., Kuang, Y.: Global analyses in some delayed ratio-dependent predator–prey systems. Nonlinear Anal., T.M.A. 32, 381–408 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Berryman, A.A.: The origin and evolution of predator–prey theory. Ecology 73, 1530–1535 (1992)CrossRefGoogle Scholar
  15. 15.
    Carr, J.: Applications of Center Manifold Theory. Springer, New York (1981)CrossRefGoogle Scholar
  16. 16.
    Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)CrossRefMATHGoogle Scholar
  17. 17.
    Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Pop. Biol. 56, 65–75 (1999)CrossRefMATHGoogle Scholar
  18. 18.
    Deng, B., Jessie, S., Ledder, G., Rand, A., Strodulski, S.: Biological control does not imply paradox. Math. Biosci. 208, 26–32 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fan, Y.H., Li, W.T.: Global asymptotic stability of a ratio-dependent predator–prey system with diffusion. J. Comput. Appl. Math. 188, 205–227 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Fan, M., Wang, Q., Zou, X.: Dynamics of a non-autonomous ratio-dependent predator–prey system. Proc. R. Soc. Edinb. A 133, 97–118 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delay. Trans. Am. Math. Soc. 352, 2217–2238 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gause, G.F.: The Struggle for Existence. Williams and Wilkins, Baltimore (1935)Google Scholar
  23. 23.
    Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control and and competition. Am. Nat. 94, 421–425 (1960)CrossRefGoogle Scholar
  24. 24.
    Hsu, S.-B., Hwang, T.-W., Kuang, Y.: Global analysis of the Michaelis–Menten type ratio-dependent predator–prey system. J. Math. Biol. 42, 489–506 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hsu, S.-B., Hwang, T.-W., Kuang, Y.: Rich dynamics of a ratio-dependent one prey two predator model. J. Math. Biol. 43, 377–396 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61, 19–32 (1999)CrossRefGoogle Scholar
  27. 27.
    Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey systems. Fields Inst. Commun. 21, 325–337 (1999)Google Scholar
  29. 29.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)MATHGoogle Scholar
  30. 30.
    Luck, R.F.: Evaluation of natural enemies for biological control: a behavioral evaluation. Trends Ecol. Evol. 5, 196–199 (1990)CrossRefGoogle Scholar
  31. 31.
    Murray, J.D.: Mathematical Biology II. Springer, Heidelberg (2002)Google Scholar
  32. 32.
    Okubo, A., Levin, S.: Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin (2001)CrossRefGoogle Scholar
  33. 33.
    Pang, P.Y.H., Wang, M.: Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc. R. Soc. Edinb. A 133, 919–942 (2003)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator–prey systems: strong interaction case. J. Differ. Equ. 247, 866–886 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation systems in ecological time. Science 171, 385–387 (1971)CrossRefGoogle Scholar
  36. 36.
    Ruan, S., Tang, Y., Zhang, W.: Versal unfoldings of predator–prey systems with ratio-dependent functional response. J. Differ. Equ. 249, 1410–1435 (2010)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Song, Y., Zou, X.: Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point. Comput. Math. Appl. doi: 10.1016/j.camwa.2014.04.015
  38. 38.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B. 237, 37–72 (1952)CrossRefGoogle Scholar
  39. 39.
    Wang, J., Shi, J., Wei, J.: Dyanmics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. J. Differ. Equ. 251, 1276–1304 (2011)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Wang, W., Liu, Q.X., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75, 051913–051921 (2007) Google Scholar
  41. 41.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)MATHGoogle Scholar
  42. 42.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)CrossRefMATHGoogle Scholar
  43. 43.
    Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator–prey systems. J. Math. Biol. 43, 221–290 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Xiao, D., Li, W.: Stability and bifurcation in a delayed ratio-dependent predator–prey system. Proc. Edinb. Math. Soc. 45, 205–220 (2003)MathSciNetGoogle Scholar
  45. 45.
    Xu, R., Davidson, F.A., Chaplain, M.A.J.: Persistence and stability for a two-species ratio-dependent predator–prey system with distributed time delay. J. Math. Anal. Appl. 269, 256–277 (2002)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Zhang, J., Li, W., Yan, X.: Hopf bifurcation and turing instability in spatial homogeneous and inhomogeneous predator–prey models. Appl. Math. Comput. 218, 1883–1893 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsTongji UniversityShanghai People’s Republic of China
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations