Advertisement

Nonlinear Dynamics

, Volume 77, Issue 4, pp 1077–1099 | Cite as

Dynamical modelling and control of space tethers: a review of space tether research

  • Yi Chen
  • Rui Huang
  • Liping He
  • Xianlin Ren
  • Bin Zheng
Review

Abstract

The literature review manuscript focuses mainly on five topics, which are related to the space tether control researches: (1) space tether dynamical modelling; (2) tether deployment and retrieval; (3) trajectory generation and control; (4) tether attitude and motion control; (5) tether vibration control and dynamical simulations. With the basic aim of establishing useful sources of fundamental researches in the literature, and high-lighting the previous control methods developed, this paper attempts to provide a contextualised source of references for the further space tether dynamics and control studies.

Keywords

Dynamics Control Non-linear Space tether  Tethered system 

Notes

Acknowledgments

The authors would like to acknowledge the partial supports provided by the National Natural Science Foundation of China (No. 51105061, 61179059, 51305068 and 51275077), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 201294001) and the Overseas Research Students Awards Scheme (ORSAS) awarded by the University of Glasgow and the scholarship awarded by the Faculty of Engineering, University of Glasgow. Also, the authors would like to acknowledge two anonymous reviewers with their valuable comments for this paper.

References

  1. 1.
    Logsdon, T.: Orbital Mechanics: Theory and Applications. Wiley, New York (1997)Google Scholar
  2. 2.
    Curtis, H.: Orbital Mechanics for Engineering Students. Elsevier Science Aerospace Engineering Series. Butterworth-Heinemann, Burlington (2004)Google Scholar
  3. 3.
    Roy, A.E., Clarke, D.: Astronomy: Principles and Practice, 4th edn. Taylor and Francis, London (2003)Google Scholar
  4. 4.
    Chen, Y.: Dynamical modelling of a flexible motorised momentum exchange tether and hybrid fuzzy sliding mode control for spin-up. PhD Thesis, Department of Mechanical Engineering, University of Glasgow, Glasgow (2010)Google Scholar
  5. 5.
    Cartmell, M.P., McKenzie, D.J.: A review of space tether research. Prog. Aerosp. Sci. 44, 1–21 (2008)Google Scholar
  6. 6.
    Sorensen, K.: Momentum exchange electrodynamic reboost (MXER) tether. National Aeronautics and Space Administration, Marshall Space Flight Center Technical, Report FS-2005-05-61-MSFC, 8–40407 (2005)Google Scholar
  7. 7.
    Misra, A.K., Modi, V.J.: Dynamics and control of tether connected two-body systems - a brief review. The 33rd International Astronautical Federation, International Astronautical Congress, Paris, France, 27 September - 2 October, 219–236 (1982)Google Scholar
  8. 8.
    Misra, A.K., Modi, V.J.: A survey on the dynamics and control of tethered satellite systems. NASA/AIAA/PSN International Conference on Tethers, Arlington, VA, 17–19 September (1986)Google Scholar
  9. 9.
    Eiden, M.J., Cartmell, M.P.: Overcoming the challenges: tether systems roadmap for space transportation applications. AIAA/ICAS International Air and Space Symposium and Exposition, Dayton Convention Center, Dayton, Ohio, 14–17 July (2003)Google Scholar
  10. 10.
    Kumar, K.D.: Review of dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43, 705–720 (2006)Google Scholar
  11. 11.
    Chen, Y., Huang, R., Ren, X.-L., He, L.-P., He, Y.: History of the tether concept and tether missions: a review. ISRN Astron. Astrophys. 502973, 7 (2013)Google Scholar
  12. 12.
    Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook (third edition). NASA Marshall Space Flight Center, Huntsville (1997)Google Scholar
  13. 13.
    Kelly, W.D.: Delivery and disposal of a space shuttle external tank to low-earth orbit. J. Astronaut Sci. 32, 343–350 (1984)Google Scholar
  14. 14.
    Bilen, S.G.: Space-borne tethers. IEEE Potentials 13, 47–50 (1994)Google Scholar
  15. 15.
    DeCou, A.B.: Tether static shape for rotating multimass, multitether, spacecraft for triangle michelson interferometer. J. Guid. 12, 273–275 (1989)Google Scholar
  16. 16.
    Kumar, K., Kumar, R., Misra, A.K.: Effects of deployment rates and librations on tethered payload raising. J. Guid. Control Dyn. 15, 1230–1235 (1992)Google Scholar
  17. 17.
    Vigneron, F.R., Jablonski, A.M., Chandrashaker, R., Bergmans, J.L., McClure, B.A., Tyc, G.: Comparison of analytical modelling of oedipus tethers with data from tether laboratory. J. Guid. Control Dyn. 20, 471–478 (1997)Google Scholar
  18. 18.
    Cartmell, M.P.: Generating velocity increments by means of a spinning motorised tether. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland Conference Centre, Cleveland, Ohio, USA, AIAA-98-3739 (1998)Google Scholar
  19. 19.
    Cartmell, M.P., Ziegler S.W.: Experimental Scale Model Testing of a Motorised Momentum Exchange Propulsion Tether. 37th AIAA/ASME/SEA/ASEE Joint Propulsion Conference and Exhibit, July 8–11, Salt Lake City, Utah, USA, AIAA 2001–3914 (2001)Google Scholar
  20. 20.
    Cartmell, M.P., Ziegler S.W., Neill, D.S.: On the Performance Prediction and Scale Modelling of A Motorised Momentum Exchange Propulsion Tether. 20th Symposium Space Nuclear Power and Propulsion; Space technology and applications international forum 2003, 2–5 February, University of New Mexico, Albuquerque, New Mexico, USA (2003)Google Scholar
  21. 21.
    Ziegler, S.W., Cartmell, M.P.: Using motorised tethers for payload orbital transfer. J. Spacecr. Rockets 38, 904–913 (2001)Google Scholar
  22. 22.
    Chen, Y., Cartmell, M.P.: Multi-objective optimisation on motorized momentum exchange tether for payload orbital transfer. 2007 IEEE Congress on Evolutionary Computation (CEC), Singapore, 25–28 September (2007)Google Scholar
  23. 23.
    Chen, Y., Cartmell, M.P.: Dynamical modelling of the motorised momentum exchange tether incorporating axial elastic effects. Advanced Problems in Mechanics Conference, Russian Academy of Sciences, St. Petersburg, Russia, 20–28 June (2007)Google Scholar
  24. 24.
    Chen, Y., Cartmell, M.P.: Hybrid fuzzy and sliding-mode control for motorised tether spin-up when coupled with axial vibration. The 7th International Conference on Modern Practice in Stress and Vibration Analysis, New Hall, Cambridge, UK, 8–10 September (2009)Google Scholar
  25. 25.
    Chen, Y., Cartmell, M.P.: Hybrid sliding mode control for motorised space tether spin-up when coupled with axial oscillation. Advanced Problems in Mechanics Conference, St Petersburg, Russia, 30 June-5 July (2009)Google Scholar
  26. 26.
    Chen, Y., Cartmell, M.P.: Hybrid sliding mode control for motorised space tether spin-up when coupled with axial and torsional oscillation. Astrophys. Space Sci. 326, 105–118 (2010)Google Scholar
  27. 27.
    Ziegler, S.W.: the Rigid-body Dynamics of Tethers in Space, PhD Dissertation. Department of Mechanical Engineering, University of Glasgow (2003)Google Scholar
  28. 28.
    McKenzie, D.J.: The dynamics of tethers and space-webs. PhD Thesis, Mechanical Engineering Department, University of Glasgow, Glasgow (2010)Google Scholar
  29. 29.
    Murray, C.: Continuous Earth-Moon payload exchange using motorised tethers with associated dynamics. PhD Thesis, Mechanical Engineering Department, University of Glasgow, Glasgow (2011)Google Scholar
  30. 30.
    Ismail, N.A.: The dynamics of a flexible Motorised Momentum Exchange Tether (MMET), PhD Thesis, Mechanical Engineering Department, University of Glasgow, Glasgow (2012)Google Scholar
  31. 31.
    Mazzoleni, A.P., Hoffman, J.H.: Nonplanar spin-up dynamics of the astor tethered satellite system. In: Proceedings of the 2001 AAS/AIAA Space Flight Mechanics Meeting, AAS 01–193 (2001)Google Scholar
  32. 32.
    Mazzoleni, A.P., Hoffman, J.H.: End-body dynamics of artificial gravity generating tethered satellite system during non-planar spin-up with elastic effects included. Adv. Astronaut. Sci. 116, 579–694 (2003)Google Scholar
  33. 33.
    Ellis, J.R., Hall, C.D.: Out-of-plane librations of spinning tethered satellite systems. Celest. Mech. Dyn. Astron. 106, 39–67 (2010)MATHMathSciNetGoogle Scholar
  34. 34.
    Aslanov, V.S.: The effect of the elasticity of an orbital tether system on the oscillations of a satellite. J. Appl. Math. Mech. 74, 416–424 (2010)MATHMathSciNetGoogle Scholar
  35. 35.
    Zanutto, D., Curreli, D., Lorenzini, E.C.: Stability of electrodynamic tethers in a three-body system. J. Guid. Control Dyn. 34, 1441–1456 (2011)Google Scholar
  36. 36.
    Kristiansen, K.U., Palmer, P.L., Roberts, R.M.: Numerical modelling of elastic space tethers. Celest. Mech. Dyn. Astron. 113, 235–254 (2012)MathSciNetGoogle Scholar
  37. 37.
    Zhao, G.W., Sun, L., Tan, S.P., Huang, H.: Librational characteristics of a dumbbell modeled tethered satellite under small, continuous, constant thrust. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 1–16 (2012)Google Scholar
  38. 38.
    Jung, W.Y., Mazzoleni, A.P., Chung, J.T.: Dynamic analysis of a tethered satellite system with a moving mass. Nonlinear Dyn. 75, 267–281 (2014)MathSciNetGoogle Scholar
  39. 39.
    Tomlin, D.D., Faile, G.C., Hayashida, K.B., Frost, C.L., Wagner, C.Y., Mitchell, M.L., Vaughn, J.A., Galuska, M.J.: Space tethers: design criteria. NASA Center: Marshall Space Flight Center Technical Report, Alabama, NASA Technical Memorandum 108537 (1997)Google Scholar
  40. 40.
    Hoyt, R.P., Forward, R.L.: Cislunar tether transport system. The 38th Aerospace Sciences Meeting and Exhibit, 10–13 January, Reno, Nevada, AIAA 00–0329 (2000)Google Scholar
  41. 41.
    Hoyt, R.P.: Moon and mars orbiting spinning tether transport system architecture study. Final Report on NASA Institute for Advanced Concepts Contract 07600–034 (2001)Google Scholar
  42. 42.
    Kumar, K.D.: Payload deployment by reusable launch vehicle using tether. J. Spacecr. Rockets 38, 291–294 (2001)Google Scholar
  43. 43.
    Williams, P., Blanksby, C., Trivailo, P.: Tethered planetary capture: controlled maneuvers. Acta Astronaut. 53, 681–708 (2003)Google Scholar
  44. 44.
    Williams, P., Yeo, S., Blanksby, C.: Heating and modeling effects in tethered aerocapture missions. J. Guid. Control Dyn. 26, 643–654 (2003)Google Scholar
  45. 45.
    Williams, P., Blanksby, C., Trivailo, P.: Tethered planetary capture maneuvers. J. Spacecr. Rockets 41, 603–613 (2004)Google Scholar
  46. 46.
    Williams, P., Blanksby, C., Trivailo, P.: Libration control of flexible tethers using electromagnetic forces and movable attachment. J. Guid. Control Dyn. 27, 882–897 (2004)Google Scholar
  47. 47.
    Williams, P., Blanksby, C.: Prolonged payload rendezvous using a tether actuator mass. J. Spacecr. Rockets 41, 889–892 (2004)Google Scholar
  48. 48.
    Williams, P., Blanksby, C., Trivailo, P., Fujii, H.A.: In-plane payload capture using tethers. Acta Astronaut. 57, 772–787 (2005)Google Scholar
  49. 49.
    Williams, P.: Optimal orbit transfer with electrodynamic tether. J. Guid. Control Dyn. 28, 369–372 (2005)Google Scholar
  50. 50.
    Williams, P.: Dynamics and control of spinning tethers for rendezvous in elliptic orbits. J. Vib. Control 12, 737–771 (2006)MATHMathSciNetGoogle Scholar
  51. 51.
    Modi, V.J., Misra, A.K.: On the deployment dynamics of tether connected two-body systems. Acta Astronaut. 6, 1183–1197 (1979)Google Scholar
  52. 52.
    Bergamaschi, S., Bonon, F., Merlina, P., Morana, M.: Theoretical and experimental investigation of TSS-1 dynamics. Acta Astronaut. 34, 69–82 (1994)Google Scholar
  53. 53.
    Chernousko, F.L.: Dynamics of retrieval of a space tethered system. J. Appl. Math. Mech. 59, 165–173 (1995)MathSciNetGoogle Scholar
  54. 54.
    Pelaez, J.: On the dynamics of the deployment of a tether from an orbiter-I. Basic equations. Acta Astronaut. 36, 113–122 (1995)Google Scholar
  55. 55.
    Pelaez, J.: On the dynamics of the deployment of a tether from an orbiter-part II. Exponential deployment. Acta Astronaut. 36, 313–335 (1995)Google Scholar
  56. 56.
    Koss, S.: Tether Deployment Mechanism for the Advanced Tether Experiment (ATEX). European Space Mechanism and Tribology Symposium 175–182 (1997)Google Scholar
  57. 57.
    Licata, R.: Tethered system deployment controls by feedback fuzzy logic. Acta Astronaut. 40, 619–634 (1997)Google Scholar
  58. 58.
    Carter, J. T., Greene, M.: Deployment and Retrieval Simulation of a Single Tether Satellitesystem. Proceedings of the Twentieth Southeastern Symposium 657–660 (1988)Google Scholar
  59. 59.
    Kumar, K., Pradeep, S.: Strategies for three dimensional deployment of tethered satellites. Mech. Res. Commun. 25, 543–550 (1998)MATHMathSciNetGoogle Scholar
  60. 60.
    Campbell, M.E., How, J.P., Grocott, S., Miller, D.W.: On-orbit closed-loop control results for the middeck active control experiment. J. Guid. Control Dyn. 22, 267–277 (1999)Google Scholar
  61. 61.
    Djebli, A., Pascal, M., Bakkali, L.: Laws of deployment/retrieval in tether connected satellites systems. Acta Astronaut. 45, 61–73 (1999)Google Scholar
  62. 62.
    Djebli, A., Bakkali, L., Pascal, M.: On fast retrieval laws for tethered satellite systems. Acta Astronaut. 50, 461–470 (2002)Google Scholar
  63. 63.
    Barkow, B.: Controlled deployment of a tethered satellite system. Proc. Appl. Math. Mech. 2, 224–225 (2003)Google Scholar
  64. 64.
    Barkow, B., Steindl, A., Troger, H., Wiedermann, G.: Various methods of controlling the deployment of a tethered satellite. J. Vib. Control 9, 187–208 (2003)MATHMathSciNetGoogle Scholar
  65. 65.
    Barkow, B., Steindl, A., Troger, H.: A targeting strategy for the deployment of a tethered satellite system. J. Appl. Math. 70, 626–644 (2005)MATHMathSciNetGoogle Scholar
  66. 66.
    Jin, D.P., Hu, H.Y.: Optimal control of deployment of a tethered subsatellite. Nonlinear Dyn. 31, 257–274 (2003)Google Scholar
  67. 67.
    Steindl, A., Steiner, W., Troger, H.: Optimal control of retrieval of a tethered subsatellite. IUTAM symposium on chaotic dynamics and control of systems and processes in mechanics 441–450 (2005)Google Scholar
  68. 68.
    Gl\(\ddot{a}\beta \)el, H., Zimmermann, F., Br\(\ddot{u}\)ckner, S., Sch\(\ddot{o}\)ttle, U.M., Rudolph, S.: Adaptive neural control of the deployment procedure for tether-assisted re-entry. Aerosp. Sci. Technol. 8, 73–81 (2004)Google Scholar
  69. 69.
    Jin, D.P., Hu, Y.: Optimal control of a tethered subsatellite of three degrees of freedom. Nonlinear Dyn. 46, 161–178 (2006)MATHMathSciNetGoogle Scholar
  70. 70.
    Williams, P.: Optimal deployment/retrieval of a tethered formation spinning in the orbital plane. J. Spacecr. Rockets 43, 638–650 (2006)Google Scholar
  71. 71.
    Williams, P.: Optimal deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52, 159–179 (2008)MATHGoogle Scholar
  72. 72.
    Mantri, P.: Deployment Dynamics of Space Tether Systems. PhD thesis, North Carolina State University (2007)Google Scholar
  73. 73.
    Iki, K., Kawamoto, S., Morino, Y.: Experiments and numerical simulations of an electrodynamic tether deployment from a spool-type reel using thrusters. Acta Astronaut. 94, 318–327 (2014)Google Scholar
  74. 74.
    Modi, V.J.: On the semi-passive attitude control and propulsion of space vehicles using solar radiation pressure. Acta Astronaut. 35, 231–246 (1995)Google Scholar
  75. 75.
    Nohmi, M., Nenchev, D.N., Uchiyama, M.: Trajectory planning and feedforward control of a tethered robot system. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 3, 1530–1535 (1996)Google Scholar
  76. 76.
    Cao, Y., Modi, V.J., Silva, C.W., Chu, M., Chen, Y., Misra, A.K.: Trajectory tracking experiments using a novel manipulator. Acta Astronaut. 52, 523–540 (2003)Google Scholar
  77. 77.
    Aaron, K.M., Heun, M.K., Nock, K.T.: A method for balloon trajectory control, advances in space research. Adv. Space Res. 30, 1227–1232 (2002)Google Scholar
  78. 78.
    Milam, M.B.: Real-time optimal trajectory generation for constrained dynamical systems, PhD thesis, California Institute of Technology (2003)Google Scholar
  79. 79.
    Sakamoto, Y., Yasaka, Y.: Methods for the orbit determination of a tethered satellite system by a single ground station. Mem. Fac. Eng. Kyushu Univ. 63, 185–202 (2003)Google Scholar
  80. 80.
    Takeichi, N., Natori, M.C., Okuizumi, N., Higuchi, K.: Periodic solutions and controls of tethered systems in elliptic orbits. J. Vib. Control 10, 1393–1413 (2004) Google Scholar
  81. 81.
    Kim, M.: Continuous low-thrust trajectory optimization: techniques and applications. PhD thesis, Virginia Polytechnic Institute and State University (2005)Google Scholar
  82. 82.
    Anselmo, L., Pardini, C.: The survivability of space tether systems in orbit around the earth. Acta Astronaut. 56, 391–396 (2005)Google Scholar
  83. 83.
    Padgett, D.A.: Nullcline analysis as a tethered satellite mission design tool. Master thesis, North Carolina State University (2006)Google Scholar
  84. 84.
    Sharma, S., Kulczycki, E.A., Elfes, A.: Trajectory generation and path planning for autonomous aerobots. IEEE International Conference on Robotics and Automation 10–14 (2007)Google Scholar
  85. 85.
    Williams, P., Hyslop, A., Stelzer, M., Kruijff, M.: YES2 optimal trajectories in presence of eccentricity and aerodynamic drag. Acta Astronaut. 64, 745–769 (2009)Google Scholar
  86. 86.
    Nakanishi, K., Kojima, H., Watanbe, T.: Trajectories of in-plane periodic solutions of tethered satellite system projected on Van Ser Pol planes. Acta Astronaut. 68, 1024–1030 (2011)Google Scholar
  87. 87.
    Avanzini, G., Fedib, M.: Refined dynamical analysis of multi-tethered satellite formations. Acta Astronaut. 84, 36–48 (2013)Google Scholar
  88. 88.
    Zhao G.W., Sun, L., Huang. H.: Thrust control of tethered satellite with a short constant tether in orbital maneuvering. Proceedings of the institution of mechanical engineers, Part G: J. Aerosp. Eng. 0954410014521151 (2014)Google Scholar
  89. 89.
    Sun, L., Hedengren, J.D., Beard, R.W.: Optimal trajectory generation using model predictive control for aerially towed cable systems. J. Guid. Control Dyn. 37, 525–539 (2014)Google Scholar
  90. 90.
    Modi, V.J., Misra, A.K.: Dynamics of an array formed by three neutrally buoyant cylindrical cantilevers subjected to tensile follower forces. J. Sound Vib. 42, 209–217 (1975)MATHGoogle Scholar
  91. 91.
    Bainum, P.M., Kumar, V.K.: Optimal control of the shuttle-tethered-subsatellite system. Acta Astronaut. 7, 1333–1348 (1980)MATHGoogle Scholar
  92. 92.
    Modi, V.J., Xu, D., Misra, A.K., ChangFu, G.: On the control of the space shuttle based tethered systems. Acta Astronaut. 9, 437–443 (1982)Google Scholar
  93. 93.
    Misra, A.K., Amier, Z., Modi, V.J.: Attitude dynamics of three-body tethered systems. Acta Astronaut. 17, 1059–1068 (1988)MATHGoogle Scholar
  94. 94.
    Modi, V.J.: Spacecraft attitude dynamics: evolution and current challenges. Acta Astronaut. 21, 669–718 (1990)Google Scholar
  95. 95.
    Lea, R.N., Villarreal, J., Jani, Y., Copeland, C.: Tether Operations using fuzzy logic based length control. IEEE International Conference on Fuzzy Systems 1335–1342 (1992)Google Scholar
  96. 96.
    Modi, V.J., Lakshmanan, P.K.: On the control of tethered satellite systems. Acta Astronaut. 26, 411–423 (1992)Google Scholar
  97. 97.
    Modi, V.J., Pidgeon, R.P.: Dynamics and control of a flexible tethered system with offset. Acta Astronaut. 32, 255–265 (1994)Google Scholar
  98. 98.
    Grassi, M., Moccia, A., Vetrella, S.: Tethered system attitude control after attachment point blocking. Acta Astronaut. 32, 355–362 (1994)Google Scholar
  99. 99.
    Grassi, M., Cosmo, M.L.: Attitude dynamics of the small expendable-tether deployment system. Acta Astronaut. 36, 141–148 (1995)Google Scholar
  100. 100.
    Modi, V.J., Pradhan, S., Misra, A.K.: Off-set control of the tethered systems using a graph theoretic approach. Acta Astronaut. 35, 373–384 (1995)Google Scholar
  101. 101.
    Modi, V.J., Pradhan, S., Chu, M., Tyc, G., Misra, A.K.: Experimental investigation of the dynamics of spinning tethered bodies. Acta Astronaut. 39, 487–495 (1996)Google Scholar
  102. 102.
    Pasca, M., Lorenzini, E.C.: Two analytical models for the analysis of a tethered satellite system in atmosphere. Acta Astronaut. 39, 263–277 (1997)MathSciNetGoogle Scholar
  103. 103.
    Modi, V.J., Pradhan, S., Misra, A.K.: Controlled dynamics of flexible orbiting tethered systems: analysis and experiments. J. Vib. Control 3, 459–497 (1997)MATHMathSciNetGoogle Scholar
  104. 104.
    Pradhan, S., Modi, V.J., Misra, A.K.: Tether-platform coupled control. Acta Astronaut. 44, 243–256 (1999)Google Scholar
  105. 105.
    Kumar, K., Kumar, K.D.: Tethered dual spacecraft configuration: a solution to attitude control problems. Aerosp. Sci. Technol. 4, 495–505 (2000)Google Scholar
  106. 106.
    Yu, S.: Tethered satellite system analysis (1)—two dimensional case and regular dynamics. Acta Astronaut. 3, 849–858 (2000)Google Scholar
  107. 107.
    Goulet, J.F., de Silva, C.W., Modi, V.J., Misra, A.K.: Hierarchical control of a space-based deployable manipulator using fuzzy logic. J. Guid. Control Dyn. 24, 395–405 (2001)Google Scholar
  108. 108.
    Kumar, K.D., Kumar, K.: Attitude maneuver of dual tethered satellite platforms through tether offset change. J. Spacecr. Rockets 38, 237–242 (2001)Google Scholar
  109. 109.
    Kim, M., Hall, C.: Control of a rotating variable-length tethered system. J. Guid. Control Dyn. 27, 849–858 (2004)Google Scholar
  110. 110.
    Lovera, M., Astolfi, A.: Spacecraft attitude control using magnetic actuators. Automatica 40, 1405–1414 (2004)MATHMathSciNetGoogle Scholar
  111. 111.
    Modi, V.J., Zhang, J., Silva, C.W.: Intelligent hierarchical modal control of a novel manipulator with slewing and deployable links. Acta Astronaut. 57, 761–771 (2005)Google Scholar
  112. 112.
    Guan, P., Liu, X., Liu, J.: Adaptive fuzzy sliding mode control for flexible satellite. Eng. Appl. Artif. Intell. 18, 451–459 (2005)Google Scholar
  113. 113.
    Zhou, X., Li, J., Baoyin, H., Zakirov, V.: Equilibrium control of electrodynamic tethered satellite systems in inclined orbits. J. Guid. Control Dyn. 29, 1451–1454 (2006)Google Scholar
  114. 114.
    Kim, M., Hall, C.: Dynamics and control of rotating tethered satellite systems. J. Spacecr. Rockets 44, 649–659 (2007)Google Scholar
  115. 115.
    Mori, O., Matunaga, S.: Formation and attitude control for rotational tethered satellite clusters. J. Spacecr. Rockets 44, 220–221 (2007)Google Scholar
  116. 116.
    Chung, S., Slotine, J.E., Miller, D.W.: Nonlinear model reduction and decentralized control of tethered formation flight by oscillation synchronization. J. Guid. Control Dyn. 30, 390–400 (2007)Google Scholar
  117. 117.
    Chung, S., Miller, D.W.: Propellant-free Control of tethered formation flight, part 1: linear control and experimentation. J. Guid. Control Dyn. 31(3), 571–584 (2008)Google Scholar
  118. 118.
    Chung, S., Slotine, J.E., Miller, D.W.: Propellant-free control of tethered formation flight, part 2: nonlinear underactuated control. J. Guid. Control Dyn. 31, 1437–1446 (2008)Google Scholar
  119. 119.
    Misra, A.K.: Dynamics and control of tethered satellite systems. Acta Astronaut. 31, 1437–1446 (2008) Google Scholar
  120. 120.
    Chang, L., Park, S.Y., Choi, K.H.: Nonlinear attitude control of a tether-connected multi-satellite in three-dimensional space. IEEE Trans. Aerosp. Electron. 46, 1950–1956 (2010)Google Scholar
  121. 121.
    Williams, P.: Optimal control of electrodynamic tether orbit transfers using timescale separation. J. Guid. Control Dyn. 33, 88–98 (2010)Google Scholar
  122. 122.
    Williams, P.: Electrodynamic tethers under forced-current variations part 1: periodic solutions for tether librations. J. Spacecr. Rockets 47, 308–319 (2010)Google Scholar
  123. 123.
    Williams, P.: Electrodynamic tethers under forced-current variations part 2: flexible-tether estimation and control. J. Spacecr. Rockets 47, 320–333 (2010)Google Scholar
  124. 124.
    Williams, P.: Quadrature discretization method in tethered satellite control. Appl. Math. Comput. 217, 8223–8235 (2011)MATHMathSciNetGoogle Scholar
  125. 125.
    Larsen, M.B., Blanke, M.: Passivity-based control of a rigid electrodynamic tether. J. Guid. Control Dyn. 34, 118–127 (2011)Google Scholar
  126. 126.
    He, L., Liang, B., Xu, W.F.: Study on the stability of tethered satellite system. Acta Astronaut. 68, 1964–1972 (2011)Google Scholar
  127. 127.
    Kojima, H., Sugimoto, Y., Furukawa, Y.: Experimental study on dynamics and control of tethered satellite systems with climber. Acta Astronaut. 69, 96–108 (2011)Google Scholar
  128. 128.
    Zhang, W., Gao, F.B., Yao, M.H.: Periodic solutions and stability of a tethered satellite system. Mech. Res. Commun. 44, 24–29 (2012)MATHGoogle Scholar
  129. 129.
    Zabolotnov, Y.M., Naumov, O.N.: Motion of a descent capsule relative to its center of mass when deploying the orbital tether system. Cosmic Res. 20, 177–187 (2012)Google Scholar
  130. 130.
    I\(\tilde{n}\)arrea, M., Lanchares, V., Pascual, A.I., Salas, J.P.: Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control. Acta Astronaut. 96, 280–295 (2014).Google Scholar
  131. 131.
    Zhong, R., Zhu, Z.H.: Optimal control of nanosatellite fast deorbit using electrodynamic tether. J. Guid. Control Dyn. 1–13 (2014).Google Scholar
  132. 132.
    Tschann, C., Modi, V.J., Soudack, A.: Planar librations of gravity-oriented satellites using analog simulation. Math. Comput. Simul. 13, 124–130 (1971)Google Scholar
  133. 133.
    Lips, K.W., Modi, V.J.: Transient attitude dynamics of satellites with deploying flexible appendages. Acta Astronaut. 5, 797–815 (1978)MATHGoogle Scholar
  134. 134.
    Misra, A.K., Xu, D.M., Modi, V.J.: On vibrations of orbiting tethers. Acta Astronaut. 3, 587–597 (1986) Google Scholar
  135. 135.
    Carter, J.T., Greene, M.: Simulation of single tether systems. Simulation 58, 42–48 (1992)Google Scholar
  136. 136.
    Kalantzis, S., Modi, V.J., Pradhan, S., Misra, A.K.: Dynamics and control of multibody tethered systems. Acta Astronaut. 42, 503–517 (1998)Google Scholar
  137. 137.
    Dignath, F., Schiehlen, W.: Control of the vibrations of a tethered satellite system. J. Appl. Math. Mech. 64, 715–722 (2000)Google Scholar
  138. 138.
    Leamy, M.J., Noor, A.K.: Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets. Comput. Methods Appl. Mech. Eng. 190, 4847–4870 (2001)MATHGoogle Scholar
  139. 139.
    Mouterde, E., Cartmell, M.P., Wang, Y.: Computational simulation of feedback linearised control of a motorised momentum exchange tether on a circular earth orbit. Nonlinear Dynamics, symposium of the sixth world congress on computational mechanics (2004)Google Scholar
  140. 140.
    Williams, P.: Spacecraft rendezvous on small relative inclination orbits using tethers. J. Spacecr. Rockets 42, 1047–1060 (2005)Google Scholar
  141. 141.
    Krupa, M., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., Wiedermann, G.: Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn. 43, 73–96 (2006)MATHMathSciNetGoogle Scholar
  142. 142.
    Williams, P., Sgarioto, D., Trivailo, P.: Optimal control of an aircraft-towed flexible cable system. J. Guid. Control Dyn. 29, 401–410 (2006)Google Scholar
  143. 143.
    Williams, P.: Libration control of tethered satellites in elliptical orbits. J. Spacecr. Rockets 43, 476–479 (2006)Google Scholar
  144. 144.
    Valverde, J., Escalona, J.L., Domínguez, J., Champneys, A.R.: Stability and bifurcation analysis of a spinning space tether. J. Nonlinear Sci. 16, 507–542 (2006)MATHMathSciNetGoogle Scholar
  145. 145.
    Williams, P., Trivailo, P.: Dynamics of circularly towed aerial cable systems, part I: optimal configurations and their stability. J. Guid. Control Dyn. 30, 753–765 (2007)Google Scholar
  146. 146.
    Williams, P., Trivailo, P.: Dynamics of circularly towed aerial cable systems, part II: transitional flight and deployment control. J. Guid. Control Dyn. 30, 766–779 (2007)Google Scholar
  147. 147.
    Wen, H., Jin, D.P., Hu, H.Y.: Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dyn. 51, 501–514 (2008)MATHMathSciNetGoogle Scholar
  148. 148.
    Chen, Y.: SMATLINK—Simple Matlab and Mathematica link laboratory toolbox. http://www.mathworks.com/matlabcentral/fileexchange/20573 (2010). Accessed 10 March 2014

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Engineering and Built EnvironmentGlasgow Caledonian UniversityGlasgowUK
  2. 2.School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.School of Mechanical, Electronic and Industrial EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations