Nonlinear Dynamics

, Volume 77, Issue 4, pp 1223–1236 | Cite as

Complex dynamic behavior in a viral model with state feedback control strategies

  • Lin-Fei Nie
  • Zhi-Dong Teng
  • Il Hyo Jung
Original Paper


With the consideration of mechanism of prevention and control for the spread of viral diseases, in this paper, we propose two novel virus dynamics models where state feedback control strategies are introduced. The first model incorporates the density of infected cells (or free virus) as control threshold value; we analytically show the existence and orbit stability of positive periodic solution. Theoretical results imply that the density of infected cells (or free virus) can be controlled within an adequate level. The other model determines the control strategies by monitoring the density of uninfected cells when it reaches a risk threshold value. We analytically prove the existence and orbit stability of semi-trivial periodic solution, which show that the viral disease dies out. Numerical simulations are carried out to illustrate the main results.


Virus dynamics model State feedback control Positive periodic solution Semi-trivial periodic solution Orbital stability 



The authors would like to thank antonymous referees for their constructive suggestions and comments that substantially improved the original manuscript. This research has been partially supported by the National Natural Science Foundation of China (Grant Nos. 11001235, 11271312, and 11261056), the China Postdoctoral Science Foundation (Grant Nos. 20110491750 and 2012T50836), and the Natural Science Foundation of Xinjiang (Grant No. 2011211B08).


  1. 1.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 141, 94–122 (1933)CrossRefMATHGoogle Scholar
  2. 2.
    Anderson, R.M.: Epidemiology. In: Cox, F.E.G. (ed.) Modern parasitology. Blackwell Scientific Publications Ltd, Oxford (1993)Google Scholar
  3. 3.
    Anderson, R.M., May, R.M.: Population biology of infectious dieases: I. Nature 280, 361–367 (1979)CrossRefGoogle Scholar
  4. 4.
    Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug therapy and virus load. J. Virol. 71, 3275–3278 (1997)Google Scholar
  5. 5.
    Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 6971–6976 (1997)CrossRefGoogle Scholar
  6. 6.
    Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 93, 4398–4402 (1996)CrossRefGoogle Scholar
  7. 7.
    Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)CrossRefGoogle Scholar
  8. 8.
    Ji, Y., Min, L.Q., Zheng, Y., Su, Y.M.: A viral infection model with periodic immune response and nonlinear CTL response. Math. Comput. Simul. 80, 2309–2316 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Leenheer, P.D.E., Smit, H.L.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63, 1313–1327 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Spouge, J.L., Shrager, R.I., Dimitrov, D.S.: HIV-1 infection kinetics in tissue cultures. Math. Biosci. 138, 1–22 (1996)CrossRefMATHGoogle Scholar
  11. 11.
    Wang, K.F., Wang, W.D., Pang, H.Y., Liu, X.N.: Complex dynamic behavior in a viral model with delayed immune response. Phys. D 226, 197–208 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Coffin, J.M.: HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489 (1995)Google Scholar
  13. 13.
    Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)CrossRefGoogle Scholar
  14. 14.
    Bartholdy, C., Christensen, J.P., Wodarz, D., Thomsen, A.R.: Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus. J. Virol. 74, 10304–10311 (2000)CrossRefGoogle Scholar
  15. 15.
    Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002)CrossRefGoogle Scholar
  16. 16.
    Chirove, F., Lungu, E.: Effects of replicative fitness on competing HIV strains. BioSystems 113, 28–36 (2013)CrossRefGoogle Scholar
  17. 17.
    Feng, Z.L., Velasco-Hernandez, J., Tapia-Santos, B., A. Leite, M.C.: A model for coupling within-host and between-host dynamics in an infectious disease. Nonlinear Dyn. 68, 401–411 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    Pang, J.H., Cui, J.A., Hui, J.: The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn. 67, 723–734 (2012)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Sharma, S., Samanta, G.P.: Dynamical behaviour of an HIV/AIDS epidemic model. Differ. Equ. Dyn. Syst. (2013). doi: 10.1007/s12591-013-0173-7
  20. 20.
    Wang, S.L., Wang, S.L., Song, X.Y.: Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control. Nonlinear Dyn. 67, 629–640 (2012)CrossRefMATHGoogle Scholar
  21. 21.
    Wang, X., Tao, Y., Song, X.: A delayed HIV-1 infection model with Beddington-DeAngelis functional response. Nonlinear Dyn. 62, 67–72 (2010)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Yang, Y.P., Xiao, Y.N., Wang, N., Wu, J.H.: Optimal control of drug therapy: Melding pharmacokinetics with viral dynamics. BioSystems 107, 174–185 (2012)CrossRefGoogle Scholar
  23. 23.
    Yuan, Z.H., Ma, Z.J., Tang, X.H.: Global stability of a delayed HIV infection model with nonlinear incidence rate. Nonlinear Dyn. 68, 207–214 (2012)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Yu, Y., Nieto, J.J., Torres, A., Wang, K.F.: A viral infection model with a nonlinear infection rate. Bound. Value Probl. 2009, Article ID 958016, 19 pages (2009)Google Scholar
  25. 25.
    Wang, T.L., Hu, Z.X., Liao, F.C.: Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response. J. Math. Anal. Appl. 411, 63–74 (2014)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Nakata, Y.: Global dynamics of a viral infection model with a latent periodic and Beddington-DeAngelis response. Nonlinear Anal. 74, 2929–2940 (2011)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Wang, Z., Zhao, X.Q.: A within-host virus model with periodic multidrug therapy. Bull. Math. Biol. 75, 543–563 (2013)MATHMathSciNetGoogle Scholar
  28. 28.
    Ball, C.L., Gilchrist, M.A., Coombs, D.: Modeling within-host evolution of HIV: mutation, competition and strain replacement. Bull. Math. Biol. 69, 2361–2385 (2007)MATHMathSciNetGoogle Scholar
  29. 29.
    Lang, J., Li, M.Y.: Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection. J. Math. Biol. 65, 181–199 (2012)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Ghorai, A., Kar, T.K.: Biological control of a predator-prey system through provision of a super predator. Nonlinear Dyn. 74, 1029–1040 (2013)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Jana, S., Kar, T.K.: A mathematical study of a prey-predator model in relevance to pest control. Nonlinear Dyn. 74, 667–883 (2013)Google Scholar
  32. 32.
    Lv, Y.F., Yuan, R., Pei, Y.Z.: Dynamics in two nonsmooth predator-prey models with threshold harvesting. Nonlinear Dyn. 74, 107–132 (2013)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Zhang, Y.: Stability of discrete-time Markovian jump delay systems with delayed impulses and partly unknown transition transition probabilities. Nonlinear Dyn. 75, 101–111 (2014)CrossRefMATHGoogle Scholar
  34. 34.
    Nie, L.F., Teng, Z.D., Guo, B.Z.: A state dependent pulse control strategy for a SIRS epidemic system. Bull. Math. Biol. 75, 1697–1715 (2013)MATHMathSciNetGoogle Scholar
  35. 35.
    Nie, L.F., Teng, Z.D., Torres, A.: Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination. Nonlinear Anal. Real World Appl. 13, 1621–1629 (2010)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Nie, L.F., Teng, Z.D., Nieto, J.J., Jung, I.H.: Dynamic analysis of a two-Language competitive model with control strategies. Math. Probl. Eng. 2013, Article ID 654619, 13 pages (2013)Google Scholar
  37. 37.
    Jiang, G.R., Lu, Q.S.: The dynamics of a prey-predator model with impulsive state feedback control. Discrete Contin. Dyn. Syst. Ser. B 6, 1310–1320 (2006)MathSciNetGoogle Scholar
  38. 38.
    Tang, S.Y., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292 (2005)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)CrossRefMATHGoogle Scholar
  40. 40.
    Hale, J., Kocak, H.: Dynamics and Bifurcations. Springer-Verlag, New York (1991) Google Scholar
  41. 41.
    Simeonov, P.S., Bainov, D.D.: Orbital stability of periodic solutions of autonomous systems with impulse effect. Int. J. Syst. Sci. 19, 2561–2585 (1988)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Ross, R.: The Prevention of Malaria, 2nd edn. Murray, London (1911)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of Mathematics and Systems ScienceXinjiang UniversityUrumqiPeople’s Republic of China
  2. 2.Department of MathematicsPusan National UniversityBusanRepublic of Korea

Personalised recommendations