Nonlinear Dynamics

, Volume 77, Issue 4, pp 1171–1189 | Cite as

Nonlinear characterization of concurrent energy harvesting from galloping and base excitations

Original Paper


An energy harvester is proposed to concurrently harness energy from base and galloping excitations. This harvester consists of a triangular cross-sectional tip mass attached to a multilayered piezoelectric cantilever beam and placed in an incompressible flow and subjected to a harmonic base excitation in the cross-flow direction. A coupled nonlinear-distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the generated voltage. The galloping force and moment are modeled by using a nonlinear quasi-steady approximation. Under combined loadings and when the excitation frequency is away from the global natural frequency of the harvester, the response of the harvester mainly contains these two harmonic frequencies. Thus, the harvester’s response is generally aperiodic and is either periodic with large period (i.e., period-\(n\)), or quasi-periodic, or chaotic. To characterize the harvester’s response under a combination of vibratory base excitations and aerodynamic loading, we use modern methods of nonlinear dynamics, such as phase portraits, power spectra, and Poincaré sections. A further analysis is then performed to determine the effects of the wind speed, frequency excitation, base acceleration, and electrical load resistance on the performance of the harvester under separate loadings.


Energy harvesting Galloping vibrations Base excitations Piezoelectric material Nonlinear analysis Poincaré sections 


  1. 1.
    Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)CrossRefGoogle Scholar
  2. 2.
    Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2005)CrossRefGoogle Scholar
  3. 3.
    Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)CrossRefGoogle Scholar
  4. 4.
    Abdelkefi, A., Ghommem, M.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor. Appl. Mech. Lett. 3, 052001 (2013)CrossRefGoogle Scholar
  5. 5.
    Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2012)CrossRefGoogle Scholar
  6. 6.
    El-hami, M., Glynne-Jones, P., White, N.M., et al.: Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A 92, 335–342 (2001)CrossRefGoogle Scholar
  7. 7.
    Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)CrossRefGoogle Scholar
  8. 8.
    Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)CrossRefGoogle Scholar
  9. 9.
    Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)CrossRefGoogle Scholar
  10. 10.
    Abdelkefi, A.: Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. PhD Dissertation. Virginia Tech. (2012)Google Scholar
  11. 11.
    Inman, D.J., Grisso, B.L.: Towards autonomous sensing. Smart Structures and Materials Conference. SPIE, 61740T (2006)Google Scholar
  12. 12.
    Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D. 239, 640–653 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133, 011007 (2011)CrossRefGoogle Scholar
  14. 14.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. (2014). doi: 10.1177/1045389X14523860
  16. 16.
    Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)CrossRefGoogle Scholar
  17. 17.
    De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. Journal of Intelligent Material Syst. Struct. 21, 983–993 (2010)CrossRefGoogle Scholar
  18. 18.
    Bryant, M., Garcia, E.: Modeling and testing of a novel aeroelastic flutter energy harvester. J. Vib. Acoust. 133, 011010 (2011)CrossRefGoogle Scholar
  19. 19.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Sensitivity analysis of piezoaeroelastic energy harvesters. J. Intell. Mater. Syst. Struct. 23, 1523–1531 (2012)CrossRefGoogle Scholar
  21. 21.
    Abdelkefi, A., Nuhait, A.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)CrossRefGoogle Scholar
  22. 22.
    Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)CrossRefGoogle Scholar
  23. 23.
    Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)CrossRefGoogle Scholar
  24. 24.
    Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–2564 (2011)CrossRefGoogle Scholar
  25. 25.
    Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. 20, 115007 (2011)CrossRefGoogle Scholar
  26. 26.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R., Najar, F.: Energy harvesting from a multifrequency response of a tuned bendingtorsion system. Smart Mater. Struct. 21, 075029 (2012)CrossRefGoogle Scholar
  27. 27.
    Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25, 174–186 (2014)CrossRefGoogle Scholar
  28. 28.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)CrossRefGoogle Scholar
  29. 29.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012)CrossRefGoogle Scholar
  30. 30.
    Akaydin, H.D., Elvin, N., Andrepoulos, Y.: Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 1263–1278 (2010)CrossRefGoogle Scholar
  31. 31.
    Akaydin, H.D., Elvin, N., Andrepoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)CrossRefGoogle Scholar
  32. 32.
    Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. (2014). doi: 10.1007/s11071-014-1355-8
  33. 33.
    Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., Nuhait, A.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656–4667 (2013)CrossRefGoogle Scholar
  34. 34.
    Mackowski, A.W., Williamson, C.H.K.: An experimental investigation of vortex-induced vibration with nonlinear restoring forces. Phys. Fluids. 25, 087101 (2013)CrossRefGoogle Scholar
  35. 35.
    Sirohi, J., Mahadik, R.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22, 2215–2228 (2012)CrossRefGoogle Scholar
  36. 36.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1377–1388 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22, 015014 (2013)CrossRefGoogle Scholar
  38. 38.
    Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)Google Scholar
  39. 39.
    Abdelkefi, A., Yan, Z., Hajj, M.R.: Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters. Eur. Phys. J. Spec. Top. 222, 1483–1501 (2013) Google Scholar
  40. 40.
    Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)CrossRefGoogle Scholar
  41. 41.
    Yang, Y.W., Zhao, L.Y., Tang, L.H.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 064105 (2013)CrossRefGoogle Scholar
  42. 42.
    Zhao, L.Y., Tang, L.H., Yang, Y.W.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013)CrossRefGoogle Scholar
  43. 43.
    Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011)CrossRefGoogle Scholar
  44. 44.
    Abdelkefi, A., Scanlon, J.M., McDowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)CrossRefGoogle Scholar
  45. 45.
    Abdelkefi, A., Hasanyan, A., Montgomery, J., Hall, D., Hajj, M.R.: Incident flow effects on the performance of piezoelectric energy harvesters from galloping vibrations. Theor. Appl. Mech. Lett. 4, 022002 (2014)CrossRefGoogle Scholar
  46. 46.
    Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332, 5086–5102 (2013)Google Scholar
  47. 47.
    Bibo, A., Daqaq, M.F.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102, 243904 (2013)CrossRefGoogle Scholar
  48. 48.
    Yan, Z., Abdelkefi, A., Hajj, M.R.: Piezoelectric energy harvesting from hybrid vibrations. Smart Mater. Struct. 23, 025026 (2014)CrossRefGoogle Scholar
  49. 49.
    Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329, 2873–2883 (2010)Google Scholar
  50. 50.
    Naudascher, E., Rockwell, D.: Flow-induced vibrations, an engineering guide. Dover Publications, New York (1994)Google Scholar
  51. 51.
    Nayfeh, A.H., Mook, D.M.: Nonlinear oscillations. Wiley, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations