Skip to main content

Advertisement

Log in

Nonlinear characterization of concurrent energy harvesting from galloping and base excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An energy harvester is proposed to concurrently harness energy from base and galloping excitations. This harvester consists of a triangular cross-sectional tip mass attached to a multilayered piezoelectric cantilever beam and placed in an incompressible flow and subjected to a harmonic base excitation in the cross-flow direction. A coupled nonlinear-distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the generated voltage. The galloping force and moment are modeled by using a nonlinear quasi-steady approximation. Under combined loadings and when the excitation frequency is away from the global natural frequency of the harvester, the response of the harvester mainly contains these two harmonic frequencies. Thus, the harvester’s response is generally aperiodic and is either periodic with large period (i.e., period-\(n\)), or quasi-periodic, or chaotic. To characterize the harvester’s response under a combination of vibratory base excitations and aerodynamic loading, we use modern methods of nonlinear dynamics, such as phase portraits, power spectra, and Poincaré sections. A further analysis is then performed to determine the effects of the wind speed, frequency excitation, base acceleration, and electrical load resistance on the performance of the harvester under separate loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  2. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2005)

    Article  Google Scholar 

  3. Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)

    Article  Google Scholar 

  4. Abdelkefi, A., Ghommem, M.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor. Appl. Mech. Lett. 3, 052001 (2013)

    Article  Google Scholar 

  5. Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2012)

    Article  Google Scholar 

  6. El-hami, M., Glynne-Jones, P., White, N.M., et al.: Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A 92, 335–342 (2001)

    Article  Google Scholar 

  7. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  8. Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)

    Article  Google Scholar 

  9. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  10. Abdelkefi, A.: Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. PhD Dissertation. Virginia Tech. (2012)

  11. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. Smart Structures and Materials Conference. SPIE, 61740T (2006)

  12. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D. 239, 640–653 (2010)

    Article  MATH  Google Scholar 

  13. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133, 011007 (2011)

    Article  Google Scholar 

  14. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. (2014). doi:10.1177/1045389X14523860

  16. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)

    Article  Google Scholar 

  17. De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. Journal of Intelligent Material Syst. Struct. 21, 983–993 (2010)

    Article  Google Scholar 

  18. Bryant, M., Garcia, E.: Modeling and testing of a novel aeroelastic flutter energy harvester. J. Vib. Acoust. 133, 011010 (2011)

    Article  Google Scholar 

  19. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2012)

    Article  MathSciNet  Google Scholar 

  20. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Sensitivity analysis of piezoaeroelastic energy harvesters. J. Intell. Mater. Syst. Struct. 23, 1523–1531 (2012)

    Article  Google Scholar 

  21. Abdelkefi, A., Nuhait, A.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)

    Article  Google Scholar 

  22. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  23. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)

    Article  Google Scholar 

  24. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–2564 (2011)

    Article  Google Scholar 

  25. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. 20, 115007 (2011)

    Article  Google Scholar 

  26. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R., Najar, F.: Energy harvesting from a multifrequency response of a tuned bendingtorsion system. Smart Mater. Struct. 21, 075029 (2012)

    Article  Google Scholar 

  27. Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25, 174–186 (2014)

    Article  Google Scholar 

  28. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)

    Article  Google Scholar 

  29. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012)

    Article  Google Scholar 

  30. Akaydin, H.D., Elvin, N., Andrepoulos, Y.: Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 1263–1278 (2010)

    Article  Google Scholar 

  31. Akaydin, H.D., Elvin, N., Andrepoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)

    Article  Google Scholar 

  32. Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1355-8

  33. Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., Nuhait, A.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656–4667 (2013)

    Article  Google Scholar 

  34. Mackowski, A.W., Williamson, C.H.K.: An experimental investigation of vortex-induced vibration with nonlinear restoring forces. Phys. Fluids. 25, 087101 (2013)

    Article  Google Scholar 

  35. Sirohi, J., Mahadik, R.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22, 2215–2228 (2012)

    Article  Google Scholar 

  36. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1377–1388 (2012)

    Article  MathSciNet  Google Scholar 

  37. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22, 015014 (2013)

    Article  Google Scholar 

  38. Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)

    Google Scholar 

  39. Abdelkefi, A., Yan, Z., Hajj, M.R.: Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters. Eur. Phys. J. Spec. Top. 222, 1483–1501 (2013)

    Google Scholar 

  40. Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)

    Article  Google Scholar 

  41. Yang, Y.W., Zhao, L.Y., Tang, L.H.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 064105 (2013)

    Article  Google Scholar 

  42. Zhao, L.Y., Tang, L.H., Yang, Y.W.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013)

    Article  Google Scholar 

  43. Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011)

    Article  Google Scholar 

  44. Abdelkefi, A., Scanlon, J.M., McDowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)

    Article  Google Scholar 

  45. Abdelkefi, A., Hasanyan, A., Montgomery, J., Hall, D., Hajj, M.R.: Incident flow effects on the performance of piezoelectric energy harvesters from galloping vibrations. Theor. Appl. Mech. Lett. 4, 022002 (2014)

    Article  Google Scholar 

  46. Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332, 5086–5102 (2013)

    Google Scholar 

  47. Bibo, A., Daqaq, M.F.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102, 243904 (2013)

    Article  Google Scholar 

  48. Yan, Z., Abdelkefi, A., Hajj, M.R.: Piezoelectric energy harvesting from hybrid vibrations. Smart Mater. Struct. 23, 025026 (2014)

    Article  Google Scholar 

  49. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329, 2873–2883 (2010)

    Google Scholar 

  50. Naudascher, E., Rockwell, D.: Flow-induced vibrations, an engineering guide. Dover Publications, New York (1994)

    Google Scholar 

  51. Nayfeh, A.H., Mook, D.M.: Nonlinear oscillations. Wiley, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessattar Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Abdelkefi, A. Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn 77, 1171–1189 (2014). https://doi.org/10.1007/s11071-014-1369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1369-2

Keywords

Navigation