Nonlinear Dynamics

, Volume 77, Issue 3, pp 1035–1045 | Cite as

Genus for knots and links in renormalizable templates with several branch nodes

Original Paper


We apply kneading theory to describe the knots and links generated by the iteration of renormalizable nonautonomous dynamical systems with reducible kneading invariants, in terms of the links corresponding to each factor. As a consequence we obtain explicit formulas for the genus for this kind of knots and links.


Nonautonomous dynamical systems Piecewise monotonous maps Renormalization Knots 



Luís Silva and Nuno Franco were partially supported by FCT-Portugal.


  1. 1.
    Williams, R.: The structure of Lorenz attractors. Publ. Math. IHES. 50, 73–99 (1979)CrossRefMATHGoogle Scholar
  2. 2.
    Birmann, J., Williams, R.F.: Knotted periodic orbits in dynamical systems I: Lorenz’s equations. Topology 22, 47–82 (1983)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Guckenheimer, J., Williams, R.: Structural stability of Lorenz attractors. Publ. Math. IHES. 50, 59–72 (1979)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ghrist, R., Holmes, P., Sullivan, M.: Knots and Links in Three-Dimensional Flows. Lecture Notes in Mathematics. Springer, New York (1997)Google Scholar
  5. 5.
    Zhang, C., Han, X., Bi, Q.: Dynamical behaviors of the periodic parameter-switching system. Nonlinear Dyn. 73, 2937 (2013)Google Scholar
  6. 6.
    Franco, N., Silva, L., Simões, P.: Symbolic dynamics and renormalization of nonautonomous \(k\) periodic dynamical systems. J. Differ. Equ. Appl. 19, 27–38 (2013)CrossRefMATHGoogle Scholar
  7. 7.
    Franco, N., Silva, L.: Genus and braid index associated to a sequence of renormalizable Lorenz maps. Discrete Contin. Dyn. Syst. (A) 50(2), 565–586 (2012)MathSciNetGoogle Scholar
  8. 8.
    de Melo, W., van Strien, ZS.: One-dimensional dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25. Springer, Berlin (1993).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ÉvoraÉvoraPortugal
  2. 2.CIMA-UE and Department of MathematicsISEL - Lisbon Superior Engineering InstituteLisboaPortugal
  3. 3.CIMA-UE and Department of MathematicsUniversity of ÉvoraÉvoraPortugal

Personalised recommendations